GRAPH REWRITING ASA

UNIVERSAL PROOFTHEORY FOR
MODERN TYPE-LOGICAL GRAMMARS

Richard Moot (CNRS, LIRMM)
MALIN/LACompLing 16-12-202|

INTRODUCTION: LANGUAGE AND LOGIC

LANGUAGE AND LOGIC

- Logic textbooks often start with an introduction relating the meaning of certain sentences (eg. "every natural number has a successor","for all epsilon greater than zero there is a delta greater than zero such that...'") to logical formulas.

THE BASIC QUESTIONS

- Formal semantics Can we translate all (or, at the very least, most) of natural language into first- or higherorder logic in a way which respects the meaning?
- Type-logical grammar/categorial grammar How can we integrate natural language syntax and semantics in a way that such a program of formal semantics can be worked out?

TRANSLATING TO LOGIC

I. every natural number has a successor $\forall x$ natural_number $(x) \rightarrow \exists y$ successor (x, y)
2. every gambler visited a casino $\forall x$ gambler $(x) \rightarrow$ gy casino($(y) \wedge$ visit (, , y)

TRANSLATING TO LOGIC

I. every natural number has a successor $\forall x$ natural_number $(x) \rightarrow \exists y \operatorname{successor}(x, y)$
2. every gambler visited a casino $\forall x$ gambler $(x) \rightarrow$ ヨy casino $(y) \wedge$ visit (x, y)

TRANSLATING TO LOGIC

I. every natural number has a successor $\forall x$ natural_number $(x) \rightarrow \exists y \operatorname{successor}(x, y)$
2. every gambler visited a casino $\forall x$ gambler $(x) \rightarrow$ yy casino $(y) \wedge$ visit (x, y)

TRANSLATING TO LOGIC

I. every natural number has a successor $\forall x$ natural_number $(x) \rightarrow \exists y \operatorname{successor}(x, y)$
2. every gambler visited a casino
$\forall x \operatorname{gambler}(x) \rightarrow \exists y \underline{\text { casino }}(y) \wedge \operatorname{visit}(x, y)$

TRANSLATING TO LOGIC

I. every natural number has a successor $\forall x$ natural_number $(x) \rightarrow \exists y \operatorname{successor}(x, y)$
2. every gambler visited a casino
$\forall x$ gambler $(x) \Longrightarrow \exists y \operatorname{casino}(y) \wedge \operatorname{visit}(x, y)$

TRANSLATING TO LOGIC

I. every natural number has a successor $\forall x$ natural_number $(x) \rightarrow \exists y$ successor (x, y)
2. every gambler visited a casino
$\forall x$ gambler $(x) \rightarrow \exists y \operatorname{casino}(y) \Delta \operatorname{visit}(x, y)$

TRANSLATING TO LOGIC

- Many of the words corresponding (at least more or less) to the standard logical connectives "no", "all", "some" but also "didn't" seem to have a sort of mismatch between the natural language sentence and the corresponding formula
- How can we "fix" this mismatch?

TRANSLATINGTO LOGIC

- How can we "fix" this mismatch?

Joachim Lambek Richard Montague (1922-2014)

THE LAMBEK CALCULUS

$$
\begin{array}{cc}
\frac{A / B \quad B}{A} / E & \frac{B}{A} \quad B \backslash A \\
A \\
& \\
\cdots \quad[B]^{i} & {[B]^{i} \quad \cdots} \\
\vdots & \vdots \\
\frac{A}{A / B} / I & \frac{A}{B \backslash A} \backslash I
\end{array}
$$

THE LAMBEK CALCULUS

$$
\frac{A / B \quad B}{A} / E \quad \frac{B \quad B \backslash A}{A} \backslash E
$$

$$
\frac{\frac{\text { the }}{n p / n} L e x}{\frac{\text { student }}{n} / E e x} \frac{\frac{\text { slept }}{n p \backslash s} L e x}{} \frac{n p}{s} \backslash E
$$

EVERY GAMBLER VISITED A CASINO

$$
\frac{\text { every }}{(s /(n p \backslash s)) / n} \frac{\text { gambler }}{n} \quad \frac{\text { visited }}{(n p \backslash s) / n p} \quad \frac{\text { a }}{((s / n p) \backslash s) / n} \quad \frac{\text { casino }}{n}
$$

EVERY GAMBLER VISITED A CASINO

$\frac{\text { every }}{\frac{(s /(n p \backslash s)) / n}{s /(n p \backslash s)}} \frac{\text { gambler }}{n} / E \quad \frac{\text { visited }}{(n p \backslash s) / n p} \quad \frac{\text { a }}{((s / n p) \backslash s) / n} \quad \frac{\text { casino }}{n}$

EVERY GAMBLER VISITED A CASINO

$\frac{\text { every }}{\frac{(s /(n p \backslash s)) / n}{s /(n p \backslash s)}} \frac{\frac{\text { gambler }}{n}}{n} / E \quad \frac{\text { visited }}{(n p \backslash s) / n p} \quad \frac{\text { a }}{\frac{((s / n p) \backslash s) / n}{(s / n p) \backslash s}} \frac{\text { casino }}{n} / E$

EVERY GAMBLER VISITED A CASINO

$\frac{\text { every }}{\frac{(s /(n p \backslash s)) / n}{s /(n p \backslash s)}} \frac{\text { gambler }}{n} / E \quad \frac{\text { visited }}{(n p \backslash s) / n p} \quad n p \quad \frac{\text { a }}{\frac{((s / n p) \backslash s) / n}{(s / n p) \backslash s}} \frac{\text { casino }}{n} / E$

EVERY GAMBLER VISITED A CASINO

$$
\frac{\text { every }}{\frac{(s /(n p \backslash s)) / n}{s /(n p \backslash s)}} \frac{\text { gambler }}{n} / E \quad \frac{\text { visited }}{(n p \backslash s) / n p} \quad n p / E \quad \frac{\frac{\text { a }}{n p \backslash s}}{\frac{((s / n p) \backslash s) / n}{(s / n p) \backslash s}} \frac{\text { casino }}{n} / E
$$

EVERY GAMBLER VISITED A CASINO

$$
\frac{\text { every }}{\frac{(s /(n p \backslash s)) / n}{} \frac{\text { gambler }}{n} / E} \quad n p \quad \frac{\frac{\text { visited }}{(n p \backslash s) / n p}}{\frac{(n p \backslash s)}{n p \backslash s}} / E \quad \frac{\frac{\text { a }}{((s / n p) \backslash s) / n}}{\frac{\text { casino }}{n}}
$$

EVERY GAMBLER VISITED A CASINO

$$
\frac{\text { every }}{\frac{(s /(n p \backslash s)) / n}{}} \frac{\text { gambler }}{n} / E \quad \frac{n p}{s /(n p \backslash s)} \frac{\frac{\text { visited }}{(n p \backslash s) / n p}}{\frac{n p \backslash s}{n}} / E \quad / E \quad \frac{\text { a }}{\frac{((s / n p) \backslash s) / n}{} \frac{\text { casino }}{n}}
$$

EVERY GAMBLER VISITED A CASINO

EVERY GAMBLER VISITED A CASINO

EVERY GAMBLER VISITED A CASINO

EVERY GAMBLER VISITED A CASINO

EVERY GAMBLER VISITED A CASINO "DEEP STRUCTURE"

The Lambek calculus is the intuitionistic, multiplicative, non-commutative fragment of linear logic. If we replace "/" and " $\$ " by "-o" we obtain a linear logic proof.

SYNTACTIC TYPES TO SEMANTICTYPES

$$
\begin{aligned}
n p^{*} & =e \\
n^{*} & =e \rightarrow t \\
s^{*} & =t \\
(A \multimap B)^{*} & =A^{*} \rightarrow B^{*}
\end{aligned}
$$

$$
\begin{aligned}
(n p \multimap(n p \multimap s)) * & =e \rightarrow(e \rightarrow t) \\
(n p \multimap s) \multimap s) * & =(e \rightarrow t) \rightarrow t \\
(n \multimap(n p \multimap s) \multimap s)) * & =(e \rightarrow t) \rightarrow((e \rightarrow t) \rightarrow t)
\end{aligned}
$$

SEMANTIC DERIVATION AND LAMBDA TERM

$$
\frac{z_{0}^{(e \rightarrow t) \rightarrow(e \rightarrow t) \rightarrow t} z_{1}^{e \rightarrow t}}{\frac{\left(z_{0} z_{1}\right)^{(e \rightarrow t) \rightarrow t}}{} \rightarrow E \quad \frac{\lambda y \cdot\left(\left(z_{2} y\right) x\right)^{e \rightarrow t}}{\frac{\left(\left(z_{3} z_{4}\right) \lambda y \cdot\left(\left(z_{2} y\right) x\right)\right)^{t}}{\lambda x \cdot\left(\left(z_{3} z_{4}\right) \lambda y \cdot\left(\left(z_{2} y\right) x\right)\right)^{e \rightarrow t}} \rightarrow I_{2}}} \rightarrow \underset{E}{\left(\left(z_{0} z_{1}\right)\left(\lambda x \cdot\left(\left(z_{3} z_{4}\right) \lambda y \cdot\left(\left(z_{2} y\right) x\right)\right)\right)\right)^{t}} \rightarrow E
$$

THE LEXICAL MEANING OF "EVERY"

$$
\begin{gathered}
(n \multimap(n p \multimap s) \multimap s)) *=(e \rightarrow t) \rightarrow((e \rightarrow t) \rightarrow t) \\
\lambda P^{e \rightarrow t} \cdot \lambda Q^{e \rightarrow t} \cdot\left(\forall^{(e \rightarrow t) \rightarrow t}\left(\lambda x^{e} \cdot\left(\left(\Rightarrow^{t \rightarrow(t \rightarrow t)}(P x)\right)(Q x)\right)\right)\right)
\end{gathered}
$$

THE LEXICAL MEANING OF "EVERY"

$$
\begin{gathered}
\lambda P^{e \rightarrow t} \cdot \lambda Q^{e \rightarrow t} \cdot\left(\forall^{(e \rightarrow t) \rightarrow t}\left(\lambda x^{e} \cdot\left(\left(\Rightarrow^{t \rightarrow(t \rightarrow t)}(P x)\right)(Q x)\right)\right)\right) \\
\lambda P^{e \rightarrow t} \cdot \lambda Q^{e \rightarrow t} \cdot \forall x^{e} \cdot[(P x) \Rightarrow(Q x)]
\end{gathered}
$$

THE LEXICAL MEANING OF "EVERY"

$$
\begin{gathered}
\lambda P^{e \rightarrow t} \cdot \lambda Q^{e \rightarrow t} \cdot\left(\forall^{(e \rightarrow t) \rightarrow t} \cdot\left(\lambda x^{e} \cdot\left(\left(\Rightarrow^{t \rightarrow(t \rightarrow t)}(P x)\right)(Q x)\right)\right)\right) \\
\lambda P^{e \rightarrow t} \cdot \lambda Q^{e \rightarrow t} \cdot \forall x^{e} \cdot[(P x) \Rightarrow(Q x)] \\
\lambda P^{e \rightarrow t} \cdot \lambda Q^{e \rightarrow t} \cdot(P \subseteq Q)
\end{gathered}
$$

THE LEXICAL MEANING OF "A"

$$
\begin{gathered}
\lambda P^{e \rightarrow t} \cdot \lambda Q^{e \rightarrow t} \cdot\left(\exists \exists^{(e \rightarrow t) \rightarrow t}\left(\lambda x^{e} \cdot\left(\left(\wedge^{t \rightarrow(t \rightarrow t)}(P x)\right)(Q x)\right)\right)\right) \\
\lambda P^{e \rightarrow t} \cdot \lambda Q^{e \rightarrow t} \cdot \exists x^{e} \cdot[(P x) \wedge(Q x)] \\
\lambda P^{e \rightarrow t} \cdot \lambda Q^{e \rightarrow t} \cdot(P \cap Q) \neq \emptyset
\end{gathered}
$$

LEXICAL SUBSTITUTION

$$
\left(\left(z_{0} z_{1}\right)\left(\lambda x \cdot\left(\left(z_{3} z_{4}\right) \lambda y \cdot\left(\left(z_{2} y\right) x\right)\right)\right)\right)
$$

$$
\begin{aligned}
& z_{0}:=\lambda P^{e \rightarrow t} \cdot \lambda Q^{e \rightarrow t} \cdot\left(\forall\left(\lambda x^{e} \cdot((\Rightarrow(P x))(Q x))\right)\right) \\
& z_{1}:=\text { gambler }^{e \rightarrow t} \\
& z_{2}:=\operatorname{visit}^{e \rightarrow(e \rightarrow t)} \\
& z_{3}:=\lambda P^{e \rightarrow t} \cdot \lambda Q^{e \rightarrow t} \cdot\left(\exists\left(\lambda x^{e} \cdot((\wedge(P x))(Q x))\right)\right) \\
& z_{4}:=\text { casino }^{e \rightarrow t}
\end{aligned}
$$

LEXICAL SUBSTITUTION

$$
\left(\left(\lambda P^{e \rightarrow t} \cdot \lambda Q^{e \rightarrow t} \cdot\left(\forall\left(\lambda v^{e} \cdot((\Rightarrow(P v))(Q v))\right)\right) \text { gambler }^{e \rightarrow t}\right)\right.
$$

$\left(\lambda x \cdot\left(\left(\lambda P^{\prime e \rightarrow t} \cdot \lambda Q^{\prime e \rightarrow t} \cdot\left(\exists\left(\lambda z^{e} \cdot\left(\left(\wedge\left(P^{\prime} z\right)\right)\left(Q^{\prime} z\right)\right)\right)\right)\right.\right.\right.$ casino $\left.^{e \rightarrow t}\right)$

$$
\left.\left.\left.\lambda y \cdot\left(\left(v i s i t^{e \rightarrow(e \rightarrow t)} y\right) x\right)\right)\right)\right)
$$

NORMALISATION

$$
\begin{gathered}
\left(\left(\lambda P^{e \rightarrow t} \cdot \lambda Q^{e \rightarrow t} \cdot\left(\forall\left(\lambda v^{e} \cdot((\Rightarrow(P v))(Q v))\right)\right) \text { gambler }^{e \rightarrow t}\right)\right. \\
\left(\lambda x \cdot \left(\left(\lambda P^{\prime e \rightarrow t} \cdot \lambda Q^{\prime e \rightarrow t} \cdot\left(\exists\left(\lambda z^{e} \cdot\left(\left(\wedge\left(P^{\prime} z\right)\right)\left(Q^{\prime} z\right)\right)\right)\right) \text { casino }^{e \rightarrow t}\right)\right.\right. \\
\left.\left.\left.\lambda y \cdot\left(\left(v i s i t^{e \rightarrow(e \rightarrow t)} y\right) x\right)\right)\right)\right)
\end{gathered}
$$

$$
\sim_{\beta}\left(\forall\left(\lambda x^{e} \cdot\left(\left(\Rightarrow\left(\text { gambler }^{e \rightarrow t} x\right)\right)\left(\exists\left(\lambda y^{e} .\left(\left(\wedge\left(\text { casino }^{e \rightarrow t} y\right)\right)\left(\left(v i s i t^{e \rightarrow(e \rightarrow t)} y\right) x\right)\right)\right)\right)\right)\right)\right.
$$

NORMALISATION

$$
\begin{gathered}
\left(\left(\lambda P^{e \rightarrow t} \cdot \lambda Q^{e \rightarrow t} \cdot\left(\forall\left(\lambda v^{e} \cdot((\Rightarrow(P v))(Q v))\right)\right) \text { gambler }^{e \rightarrow t}\right)\right. \\
\left(\lambda x \cdot \left(\left(\lambda P^{\prime e \rightarrow t} \cdot \lambda Q^{\prime e \rightarrow t} \cdot\left(\exists\left(\lambda z^{e} \cdot\left(\left(\wedge\left(P^{\prime} z\right)\right)\left(Q^{\prime} z\right)\right)\right)\right) \text { casino }^{e \rightarrow t}\right)\right.\right. \\
\left.\left.\left.\lambda y \cdot\left(\left(v i s i t^{e \rightarrow(e \rightarrow t)} y\right) x\right)\right)\right)\right)
\end{gathered}
$$

$$
\sim_{\beta}\left(\forall\left(\lambda x^{e} \cdot\left(\left(\Rightarrow\left(\text { gambler }^{e \rightarrow t} x\right)\right)\left(\exists\left(\lambda y^{e} .\left(\left(\wedge\left(\text { casino }^{e \rightarrow t} y\right)\right)\left(\left(\text { visit }{ }^{e \rightarrow(e \rightarrow t)} y\right) x\right)\right)\right)\right)\right)\right)\right.
$$

$$
\equiv_{d e f} \forall x .[\operatorname{gambler}(x) \Rightarrow \exists y .[\operatorname{casino}(y) \wedge \operatorname{visit}(x, y)]]
$$

LAMBEK AND MONTAGUE

- Montague's strategy makes the apparent mismatch between syntax and semantics disappear.
- Syntax and semantics are developed in parallel.

PROBLEMS AND EXTENSIONS

- Most variants and extensions of the Lambek calculus agree on the "deep structure", the (multiplicative, intuitionistic) linear logic proof used for the computation of semantics.
- However, the "surface structure" of these logics are rather different: different connectives, structures, operations...

DE DICTO/DE RE

"John believes someone left"

$$
\frac{\frac{\text { John }}{n p} \operatorname{Lex} \frac{\frac{\text { believes }}{s \multimap(n p \multimap s)} \operatorname{Lex} \frac{\frac{\text { someone }}{(n p \multimap s) \multimap s} \text { Lex } \frac{\text { left }}{n p \multimap s}}{n p \multimap s} \text { Lex }}{n} \multimap E}{n} \multimap E
$$

DE DICTO/DE RE

"John believes someone left"

This is not the forgetful mapping of any Lambek calculus proof! (at least not given npls for "left" and (npls)/s for "believes")

DUTCH VERB CLUSTERS

"(dat Jan) Henk Marie de nijlpaarden zag helpen voeren"

DUTCH VERB CLUSTERS

"(dat Jan) Henk Marie de nijlpaarden zag helpen voeren"

GAPPING

"John studies logic and Charles phonetics"

$$
\begin{aligned}
t v & =n p \multimap n p \multimap s \\
X & =t v \multimap s \\
& =(n p \multimap n p \multimap s) \multimap s
\end{aligned}
$$

VP ELLIPSIS

"John left before Mary did"

$$
v p=n p \multimap s
$$

EXTENDING
 THE LAMBEK CALCULUS

- Grammar design in type-logical grammars can be viewed as a form of "reverse engineering" based on a semantic structure (i.e. a linear logic proof).
- Lambek grammars have only the option of choosing a direction for the slashes; other systems allow discontinuous dependencies.

GOING FURTHER

- The Lambek calculus gives a simple account of some elementary facts about the syntax-semantics interface.
- However, once we want to handle more complex examples, we run into problems.
- Many variants and extensions of the Lambek calculus have been proposed to solve these problems.

MODERN
 TYPE-LOGICAL GRAMMARS

MODERNTYPE-LOGICAL GRAMMARS

- We are looking for a logic which solves the problems with the Lambek calculus, while not sacrificing simplicity and good logical properties.
- Many solutions have been proposed, which makes comparisons different.
- There is a "family resemblance" between many of the proposed analyses, but can we make this more precise?

MULTIMODAL

$$
\begin{array}{cc}
\frac{\Delta \vdash A \bullet_{i} B \quad \Gamma\left[\left(A \circ_{i} B\right)\right] \vdash C}{\Gamma[\Delta] \vdash C}[\bullet E] & \frac{\Gamma \vdash A \quad \Delta \vdash B}{\left(\Gamma \circ_{i} \Delta\right) \vdash A \bullet_{i} B}[\bullet I] \\
\frac{\Gamma \vdash A /_{i} B \quad \Delta \vdash B}{\left(\Gamma \circ_{i} \Delta\right) \vdash A}[/ E] & \frac{\left(\Gamma \circ_{i} B\right) \vdash A}{\Gamma \vdash A /_{i} B}[/ I] \\
\frac{\Gamma \vdash B \quad \Delta \vdash B \backslash_{i} A}{\left(\Gamma \circ_{i} \Delta\right) \vdash A}[\backslash E] & \frac{\left(B \circ_{i} \Gamma\right) \vdash A}{\Gamma \vdash B \backslash_{i} A}[\backslash I]
\end{array}
$$

Oehrle \& Zhang (I989), Moortgat \& Morrill (|99|), Moortgat \& Oehrle (I993, I994), Hepple (I994)

MULTIMODAL

$$
\frac{\Gamma\left[\Delta_{1} \circ_{2}\left(\Delta_{2} \circ_{1} \Delta_{3}\right)\right] \vdash C}{\Gamma\left[\left(\Delta_{1} \circ_{2} \Delta_{2}\right) \circ_{1} \Delta_{3}\right] \vdash C} M A \quad \frac{\Gamma\left[\Delta_{2} \circ_{2}\left(\Delta_{1} \circ_{1} \Delta_{3}\right)\right] \vdash C}{\Gamma\left[\Delta_{1} \circ_{1}\left(\Delta_{2} \circ_{2} \Delta_{3}\right)\right] \vdash C} M C
$$

$$
\frac{\text { Marie } \vdash n p \frac{\text { wil } \vdash\left(n p \backslash_{1} s\right) / /_{1} \text { inf }}{\text { wil } \circ_{1}\left(\text { boeken } \circ_{2} \text { lezenen }\right) \vdash n p \backslash s} \text { boeken } \vdash n p \text { lezen } \vdash n p \backslash_{2} \text { inf }}{\text { Marie } \circ_{1}\left(\text { wil } \circ_{1}\left(\text { boeken } \circ_{2} \text { lezen }\right) \vdash s\right.} / \sum E
$$

For details, see Moortgat \& Oehrle (1994), Oehrle (201I)

DISPLACEMENT CALCULUS

$$
\begin{aligned}
& {\left[\alpha_{1}+1+\alpha_{2}: A\right]^{i} \quad[\beta: B]^{i}} \\
& \frac{\delta: A \odot B \quad \gamma_{1}+\alpha_{1}+\beta+\alpha_{2}+\gamma_{2}: C}{\gamma_{1}+\delta+\gamma_{2}: C} \odot E_{i} \quad \frac{\alpha_{1}+1+\alpha_{2}: A \quad \beta: B}{\alpha_{1}+\beta+\alpha_{2}: A \odot B} \odot I \\
& {[\beta: B]^{i}} \\
& \frac{\alpha_{1}+\mathbf{1}+\alpha_{2}: C \uparrow B \quad \beta: B}{\alpha_{1}+\beta+\alpha_{2}: C} \uparrow E \\
& \frac{\alpha_{1}+\mathbf{1}+\alpha_{2}: A \quad \beta: A \downarrow C}{\alpha_{1}+\beta+\alpha_{2}: C} \downarrow E \\
& \frac{\alpha_{1}+\beta+\alpha_{2}: C}{\alpha_{1}+1+\alpha_{2}: C \uparrow B} \uparrow I_{i} \\
& {\left[\alpha_{1}+\mathbf{1}+\alpha_{2}: A\right]^{i}} \\
& \frac{\alpha_{1}+\beta+\alpha_{2}: C}{\beta: A \downarrow C} \downarrow I_{i}
\end{aligned}
$$

DISPLACEMENT CALCULUS

$$
\begin{gathered}
a: n p \\
\vdots \\
\frac{\text { someone }:(s \uparrow n p) \downarrow s \quad \frac{\text { Mary }+ \text { thinks }+a+\text { left }: s}{\text { Mary }+ \text { thinks }+\mathbf{1}+\text { left }: s \uparrow n p} \uparrow I}{\text { Mary }+ \text { thinks }+ \text { someone }+ \text { left }: s} \downarrow E
\end{gathered}
$$

HYBRIDTYPE-LOGICAL GRAMMARS

$$
\begin{array}{ll}
\frac{\Gamma \vdash M: A \multimap B \quad \Delta \vdash N: A}{\Gamma, \Delta \vdash(M N): B} \multimap E & \frac{\Gamma, x: A \vdash M: B}{\Gamma \vdash \lambda x \cdot M: A \multimap B} \multimap I \\
\frac{\Gamma \vdash P: B \quad \Delta \vdash Q: B \backslash A}{\Gamma, \Delta \vdash P+Q: A} \backslash E & \frac{w: B, \Gamma \vdash w+P: A}{\Gamma \vdash P: B \backslash A} \backslash I \\
\frac{\Gamma \vdash P: A / B \quad \Delta \vdash Q: B}{\Gamma, \Delta \vdash P+Q: A} / E & \frac{\Gamma, w: B \vdash P+w: A}{\Gamma \vdash P: A / B} / I
\end{array}
$$

HTLG: GAPPING

Kubota \& Levine (20| 2,2020)

THE LOGIC OF SCOPE $N L \lambda$

$$
\begin{array}{lc}
\frac{\Gamma \vdash C / B \Delta \vdash B}{\Gamma \circ \Delta \vdash C} / E & \frac{(\Gamma \circ B) \vdash C}{\Gamma \vdash C / B} / I \\
\frac{\Gamma \vdash A \Delta \vdash A \backslash C}{\Gamma \circ \Delta \vdash C} \backslash E & \frac{(A \circ \Gamma) \vdash C}{\Gamma \vdash A \backslash C} \backslash I \\
\frac{\Gamma[(A \circ B)] \vdash D}{\Gamma[A \bullet B] \vdash D} \bullet E & \frac{\Gamma \vdash A \Delta \vdash B}{(\Gamma \circ \Delta) \vdash A \bullet B} \bullet I \\
\frac{\Gamma \vdash C \square B \Delta \Delta \vdash B}{\Gamma \odot \Delta \vdash C} / E & \frac{(\Gamma \odot B) \vdash C}{\Gamma \vdash C / B} / I \\
\frac{\Gamma \vdash A \Delta \Delta \vdash A \rrbracket C}{\Gamma \odot \Delta \vdash C} \backslash E & \frac{(A \odot \Gamma) \vdash C}{\Gamma \vdash A \backslash C} \backslash I \\
\frac{\Gamma[(A \odot B)] \vdash D}{\Gamma[A \odot B] \vdash D} \bullet E & \frac{\Gamma \vdash A \quad \Delta \vdash B}{(\Gamma \odot \Delta) \vdash A \odot B} \bullet I \\
\Xi[(\Delta \odot \lambda x \cdot \Gamma[x])] \vdash D \\
\Xi[\Gamma[\Delta]] \vdash D
\end{array} \quad \frac{\Xi[\Gamma[\Delta]] \vdash D}{\Xi[(\Delta \odot \lambda x \cdot \Gamma[x])] \vdash D} \beta^{-1}
$$

THE LOGIC OF SCOPE NL 入

$$
\begin{array}{ll}
\frac{\Gamma \vdash C / B \quad \Delta \vdash B}{\Gamma \circ \Delta \vdash C} / E & \frac{(\Gamma \circ B) \vdash C}{\Gamma \vdash C / B} / I \\
\frac{\Gamma \vdash A \Delta \vdash A \backslash C}{\Gamma \circ \Delta \vdash C} \backslash E & \frac{(A \circ \Gamma) \vdash C}{\Gamma \vdash A \backslash C} \backslash I \\
\frac{\Gamma[(A \circ B)] \vdash D}{\Gamma[A \bullet B] \vdash D} \bullet E & \frac{\Gamma \vdash A \Delta \vdash B}{(\Gamma \circ \Delta) \vdash A \bullet B} \bullet I
\end{array}
$$

THE LOGIC OF SCOPE $N L \lambda$

$$
\begin{array}{ll}
\frac{\Gamma \vdash C \square B \quad \Delta \vdash B}{\Gamma \odot \Delta \vdash C} / E & \frac{(\Gamma \odot B) \vdash C}{\Gamma \vdash C \square B} / I \\
\frac{\Gamma \vdash A \Delta \vdash A \rrbracket C}{\Gamma \odot \Delta \vdash C} \backslash E & \frac{(A \odot \Gamma) \vdash C}{\Gamma \vdash A \rrbracket C} \backslash I \\
\frac{\Gamma[(A \odot B)] \vdash D}{\Gamma[A \odot B] \vdash D} \bullet E & \frac{\Gamma \vdash A \Delta \vdash B}{(\Gamma \odot \Delta) \vdash A \odot B} \bullet I
\end{array}
$$

THE LOGIC OF SCOPE NL 入

$$
\begin{array}{lc}
\frac{\Gamma \vdash C \rrbracket B \quad \Delta \vdash B}{\Gamma \odot \Delta \vdash C} / E & \frac{(\Gamma \odot B) \vdash C}{\Gamma \vdash C \square B} / I \\
\frac{\Gamma \vdash A \Delta \vdash A \boxtimes C}{\Gamma \odot \Delta \vdash C} \backslash E & \frac{(A \odot \Gamma) \vdash C}{\Gamma \vdash A \rrbracket C} \backslash I \\
\frac{\Gamma[(A \odot B)] \vdash D}{\Gamma[A \odot B] \vdash D} \bullet E & \frac{\Gamma \vdash A \Delta \vdash B}{(\Gamma \odot \Delta) \vdash A \odot B} \bullet I \\
\frac{\Xi[(\Delta \odot \lambda x \cdot \Gamma[x])] \vdash D}{\Xi[\Gamma[\Delta]] \vdash D} \beta & \frac{\Xi[\Gamma[\Delta]] \vdash D}{\Xi[(\Delta \odot \lambda x \cdot \Gamma[x])] \vdash D} \beta^{-1}
\end{array}
$$

Barker \& Shan (20|4), Barker (20|9)

THE LOGIC OF SCOPE $N L \lambda$

$$
\frac{\Xi[(\Delta \odot \lambda x \cdot \Gamma[x])] \vdash D}{\Xi[\Gamma[\Delta]] \vdash D} \beta
$$

$$
\frac{\Xi[\Gamma[\Delta]] \vdash D}{\Xi[(\Delta \odot \lambda x \cdot \Gamma[x])] \vdash D} \beta^{-1}
$$

THE LOGIC OF SCOPE $N L \lambda$

$$
(\lambda x \cdot M) N \equiv M[x::=N]
$$

$$
\frac{\Xi[(\Delta \odot \lambda x . \Gamma[x])] \vdash D}{\Xi[\Gamma[\Delta]] \vdash D} \beta
$$

$$
\frac{\Xi[\Gamma[\Delta]] \vdash D}{\Xi[(\Delta \odot \lambda x \cdot \Gamma[x])] \vdash D} \beta^{-1}
$$

THE LOGIC OF SCOPE $N L \lambda$

$$
\begin{gathered}
\vdots \\
\frac{\text { Joh } n \circ(\text { saw } \circ n p) \vdash s}{n p \odot \lambda x .(J o h n \circ(s a w \circ x)) \vdash s} \beta^{-1} \\
\frac{\text { everyone } \vdash s \rrbracket(n p \rrbracket s)}{\frac{\text { everyone } \odot \lambda x .(\text { John } \circ(\text { saw } \circ x)) \vdash s}{\text { Joh } n \circ(\text { saw } \circ \text { everyone }) \vdash s} \beta} \beta
\end{gathered}
$$

$\frac{\Xi[(\Delta \odot \lambda x \cdot \Gamma[x])] \vdash D}{\Xi[\Gamma[\Delta]] \vdash D} \beta$

$$
\frac{\Xi[\Gamma[\Delta]] \vdash D}{\Xi[(\Delta \odot \lambda x \cdot \Gamma[x])] \vdash D} \beta^{-1}
$$

MODERNTYPE-LOGICAL GRAMMARS

Logic	Connectives	Structure	Operations
L	$/$, •, \}	list	-
NL	$1, \bullet, \$ & binary tree & - \hline Multimodal & ${ }_{i}, \bullet_{i}, \backslash_{i}$	labeled binary tree	tree rewrites
	$\diamond_{j}, \square_{j}$	labeled 1-2 tree	tree rewrites
D	$\begin{aligned} & \mathbf{L}+\uparrow_{k}, \odot_{k}, \downarrow_{k} \\ & \wedge, \vee \end{aligned}$	tuple of lists	wrap
Lambda	-	lambda term	β reduction
Hybrid	$\mathbf{L}+\multimap$	lambda term (list)	β reduction
NL_{λ}	$\mathbf{N L}+\square, \bigcirc, \square$	lambda term (tree)	β reduction/expansion
LG	$\mathbf{N L}+\oslash, \circledast, \oslash$	free tree	graph rewrites

PROOF NETS

PROOF NETS

- Optimal (redundancy-free) representation of proofs in multiplicative linear logic (Girard I987)
- Adapted to the Lambek calculus (Roorda |99।) and to multimodal categorial grammars (Moot \& Puite 2002)
- What about other modern type-logical grammars?

PROOF NETS AND PROOF SEARCH

- Proof search for proof nets is very easy
I. Write down formula decomposition tree

2. Match atoms (leaves) of opposite polarity
3. Check correctness of underlying structure using graph rewriting

LINKS

NL

[/L]

$[/ R]$

[•L]

LINKS

$N L \lambda$

[$[L]$

[$/ R]$

[\odot]

[$\backslash L]$

EXAMPLE: JOHN SAW EVERYONE

John
$n p$

S

EXAMPLE:
 JOHN SAW EVERYONE

EXAMPLE:
 JOHN SAW EVERYONE

EXAMPLE: JOHN SAW EVERYONE

CONTRACTIONS

CONTRACTIONS

Moot \& Puite (2002)

CONTRACTIONS

STRUCTURAL RULES: SUGARED VERSION

STRUCTURAL RULES

Condition: h_{2} must be an ancestor of c_{1} by a path which does not pass any asynchronous (par, filled) links

EXAMPLE: JOHN SAW EVERYONE

$$
\begin{gathered}
\text { EXAMPLE: } \\
\text { JOHN SAW EVERYONE }
\end{gathered}
$$

EXAMPLE: JOHN SAW EVERYONE

EXAMPLE: JOHN SAW EVERYONE

EXAMPLE: JOHN SAW EVERYONE

KEY PROPERTY

We can, without loss of generality, replace the beta expansion rule by the following rule (a proof net refection of the same principle of Barker 2019)

Condition: h must be an ancestor of c , by a path which does not pass any asynchronous (par) links

EVERYONE READTHE SAME BOOK

HTLG: LINKS

[/E]

[/]

$[\backslash]$

[\circ E]

$[-\infty]$

Moot \& Stevens-Guile (2019, to appear)

HTLG: EVERYONE SLEEPS

$$
\begin{aligned}
\text { Lex }(\text { everyone }) & =\lambda P .(P \text { everyone }):(n p \multimap s) \multimap s \\
\text { Lex }(\text { sleeps }) & =\quad \lambda y . y+\text { sleeps }: n p \multimap s
\end{aligned}
$$

HTLG: EVERYONE SLEEPS

HTLG: EVERYONE SLEEPS

HTLG: EVERYONE SLEEPS

HTLG: CONTRACTIONS

Condition: c_{2} must be an ancestor of h by a path which does not pass any asynchronous (par) links

HTLG: BETA RULE

Condition: h_{2} must be an ancestor of c , by a path which does not pass any asynchronous (par) links

HTLG: EVERYONE SLEEPS

HTLG: EVERYONE SLEEPS

HTLG: EVERYONE SLEEPS

COMPARISONS

COMPARISON

NL入

HTLG

COMPARISON

HTLG abstract proof structure

Partial evaluation of redexes in the lexical entry; already used by de Groote \& Retoré (1996) and Morrill (1999) for semantics.
NL_{λ} proof structure

NL_{λ} abstract proof structure

TRANSLATIONS

HTLG		NL_{λ}
+ link	\leftrightarrow	\circ link
@ with premisses $p_{1}-p_{2}$	\leftrightarrow	\bigcirc with premisses $p_{2}-p_{1}$
λ tensor (lexicon)		$? ? ?$
λ par with conclusions $c_{1}-c_{2}$	\leftrightarrow	\square par with conclusions $c_{2}-c_{1}$
$? ? ?$		t, \square, \odot par links
contractions for $/, \backslash$	\leftrightarrow	contractions for $/, \backslash$
$? ? ?$		contraction for \bullet
λ par rewrite	\leftrightarrow	$\beta^{-1} \rrbracket$ rewrite
β rewrite	\leftrightarrow	β rewrite
η rewrite	\leftrightarrow	contraction for \rrbracket
$? ? ?$		contractions for t, \square, \odot

TRANSLATIONS

The gapping analysis of Kubota \& Levine (20|3) translates into NL入 as follows.

$$
((t v \odot(t v \backslash s)) \backslash s) /(t \odot(t v \rrbracket s))
$$

TRANSLATIONS

TRANSLATIONS

The analysis of "same/ different" from Barker \& Shan (2014) translates into HTLG as follows

$$
\begin{aligned}
& ((n \backslash n) \multimap n p \multimap s) \multimap n p \multimap s \\
& \lambda P . \lambda x .((P \text { same }) x)
\end{aligned}
$$

TRANSLATIONS

Dutch verb clusters in NL入

$$
\begin{array}{rl}
d a t & s_{\text {that }} / s_{\text {sub }} \\
\text { Jan } & n p \\
\text { Henk } & n p \\
\text { Marie } & n p \\
d e & n p / n \\
\text { nijlpaarden } & n \\
z a g & \left(n p \backslash\left(n p \backslash s_{\text {sub }}\right)\right) \backslash(j \rrbracket i n f) \\
\text { helpen } & j \backslash((n p \backslash i n f) \backslash(j \backslash i n f)) \\
\text { voeren } & j \backslash(n p \backslash i n f)
\end{array}
$$

TRANSLATIONS

Dutch verb clusters in NL入

$$
\begin{array}{rl}
d a t & s_{t h a t} / s_{\text {sub }} \\
\text { Jan } & n p \\
\text { Henk } & n p \\
\text { Marie } & n p \\
d e & n p / n \\
\text { nijlpaarden } & n \\
z a g & \left(n p \backslash\left(n p \backslash s_{s u b}\right)\right) \square(j \boxtimes i n f) \\
\text { helpen } & j \backslash((n p \backslash i n f) \square(j \backslash i n f)) \\
\text { voeren } & j \backslash(n p \backslash i n f)
\end{array}
$$

Compare: Morrill e.a. (20 I I)

$$
\begin{array}{rl}
z a g & i n f \backslash_{w}\left(n p \backslash\left(n p \backslash s_{s u b}\right)\right. \\
\text { helpen } & J \backslash\left(i n f \backslash_{w}(n p \backslash i n f)\right) \\
\text { voeren } & J \backslash(n p \backslash i n f)
\end{array}
$$

TRANSLATIONS

HTLG

NL入

CONCLUSIONS

- Despite starting with different primitives, HTLG and NL入 produce structures which are related by a simple isomorphism for many of their key linguistic analyses.

CONCLUSIONS

- There appears to be a "common core" of phenomena which can be handled by most typelogical grammars.
- Differences around the edges: higher-order lambda terms allow expressivity which appears to be out of reach for the Displacement calculus; the Displacement calculus can refer to the linear order of gaps.

CONCLUSION

- Single overarching proof theory for monder typelogical grammars
- We can add different "packages": associativity, beta reduction, wrap
- Makes correspondence between many analyses in different formalisms clear

FUTURE WORK

- Implementation of the graph based formalism in its full generality (using existing graph rewrite tools)
- Beyond the multiplicative fragment?
- More precise relations between different logics and grammars
- Formal language theory?

THANK YOU!

MARY TALKEDTO JOHN ABOUT HIMSELF

