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INTRODUCTION:
LANGUAGE AND LOGIC



LANGUAGE AND LOGIC

• Logic textbooks often start with an introduction 
relating the meaning of certain sentences (eg. 
“every natural number has a successor”, “for all 
epsilon greater than zero there is a delta greater 
than zero such that…”) to logical formulas.



THE BASIC QUESTIONS

• Formal semantics Can we translate all (or, at the 
very least, most) of natural language into first- or higher-
order logic in a way which respects the meaning?

• Type-logical grammar/categorial grammar 
How can we integrate natural language syntax and 
semantics in a way that such a program of formal 
semantics can be worked out?



TRANSLATING TO LOGIC

1. every natural number has a successor

2. every gambler visited a casino
∀x gambler(x) → ∃y casino(y) ∧ visit(x,y)

∀x natural_number(x) → ∃y successor(x,y)
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TRANSLATING TO LOGIC

• Many of the words corresponding (at least more 
or less) to the standard logical connectives “no”, 
“all”, “some” but also “didn’t” seem to have a sort 
of mismatch between the natural language 
sentence and the corresponding formula

• How can we “fix” this mismatch?



TRANSLATING TO LOGIC

• How can we “fix” this mismatch?

Joachim Lambek
(1922-2014)

Richard Montague
(1930-1971)
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Precursors

n for common nouns like “book” and “student”

np for noun phrases like “John” and “the book”

s for sentences like “It rained” and “John read the book”

pp for prepositional phrases like “by John” and “in the book”

and possibly a few others, though generally these four atomic formulas are
used. It is possible to add some more detail to the formulas, for example by
distinguishing between ppby and ppin (to distinguish between prepositional
phrases headed by “by” and “in” respectively), or between sdecl and synq (to
distinguish between a declarative sentence and a yes-no question).

Given two formulas A and B (atomic or complex), we can form formulas
A/B (pronounced A over B), B\A (pronounced B under A)1. The idea behind
the two logical connectives is as follows.

A formula A/B is looking to its right for an expression of type B to form an
expression of type A. For example, when we assign the word “the” the formula
np/n we indicate it combines with an expression of type n to form an expression
of type np, that is, a noun phrase. Therefore, under these assignments “the
student” corresponds to np/n,n, and according to the meaning of “/”, these
formulas combine into an expression of type np.

Similarly, a formula B\A is looking to its left for an expression of type B to
form an expression of type A. For example, when we assign the word “slept”
the formula np\s, we indicate it combines with an expression of type np to
form an expression of type s, that is, a sentence. Under these assignments
“the student slept”, with the student analysed as np as above, corresponds to
np,np\s, which is a sentence under the meaning of “\”

AB grammars have the following two simplification rules, which are simply
a translation of the intuitions behind the connectives into a formal system we
can use for calculations of grammaticality.

A/B B

A
[/]

B B\A
A

[\]

Using these rules, we can show that “the student slept” is a valid sentence
as follows (the English words are written above the given formulas using a
“Lex” rule).

the
np/n

Lex
student

n
Lex

np
/E

slept

np\s Lex

s
\E

1Ajdukiewicz (1935) does not distinguish between the leftward looking and the rightward
looking implication. The notation used here was introduced by Lambek (1958) and was
adopted by Bar-Hillel in his later work (Bar-Hillel 1964).
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EVERY GAMBLER VISITED A CASINO
“DEEP STRUCTURE”
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Figure 1.2: Deep structure of the derivation of Figure 1.1.
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Figure 1.3: Intuitionistic proof and lambda term corresponding to the deep
structure of Figure 1.2.

We have kept the order of the premisses of the rules as they were in Fig-
ure 1.1 to allow for an easier comparison. This deep structure still uses the
same atomic formulas as the Lambek calculus, it just forgets about the order
of the formulas and therefore can no longer distinguish between the leftward
looking implication ‘\’ and the rightward looking implication ‘/’.

To obtain a semantics in the tradition of Montague (1974), we use the
following mapping from syntactic types to semantic types, using Montague’s
atomic types e (for entity) and t (for truth value).

np⇤ = e

n⇤ = e ! t

s⇤ = t

(A ( B)⇤ = A⇤ ! B⇤

Applying this mapping to the deep structure proof of Figure 1.2 produces
the intuitionistic proof and the corresponding (linear) lambda term as shown
in Figure 1.3

The computed term corresponds to the derivational semantics of the proof.
To obtain the complete meaning, we need to substitute, for each of z0, . . . , z4,
the meaning assigned in the lexicon.
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The Lambek calculus is the intuitionistic, multiplicative, 
non-commutative fragment of linear logic. If we replace
“/“ and “\” by “    “ we obtain a linear logic proof.(

semantics
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SEMANTIC DERIVATION AND 
LAMBDA TERM
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THE LEXICAL MEANING OF “EVERY”
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THE LEXICAL MEANING OF “A”
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LEXICAL SUBSTITUTION

Lambek calculus and Type-Logical Grammars

For example, “every” has syntactic type (s/(np\s))/n and its semantic type
is (e ! t) ! (e ! t) ! t. The corresponding lexical lambda term of this type
is �P e!t.�Qe!t.(8(�xe.(() (P x))(Qx)))), with ‘8’ a constant of type (e !
t) ! t and ‘)’ a constant of type t ! (t ! t). In the more familiar Montague
formulation, this lexical term corresponds to �P e!t.�Qe!t.8x.[(P x) ) (Qx)],
where we can see the formula in higher-order logic we are constructing more
clearly. Although the derivational semantics is a linear lambda term, the lexical
term assigned to “every” is not, since the variable x has two bound occurrences.

The formula assigned to “some” has the same semantic type but a di↵erent
term �P e!t.�Qe!t.(9(�xe.((^(P x))(Qx)))).

The other words are simple, “exam” is assigned exame!t, “student” is
assigned studente!t, and “aced” is assigned acee!(e!t).

So to compute the meaning, we start with the derivational semantics, re-
peated below.

((z0 z1) (�x.((z3 z4)�y.((z2 y)x))))

Then we substitute the lexical meanings, for z0, . . . , z4.

z0 := �P e!t.�Qe!t.(8(�xe.(() (P x))(Qx))))

z1 := studente!t

z2 := acee!(e!t)

z3 := �P e!t.�Qe!t.(9(�xe.((^(P x))(Qx))))

z4 := exame!t

This produces the following lambda term.

((�P e!t.�Qe!t.(8(�xe.(() (P x))(Qx)))) studente!t)

(�x.((�P e!t.�Qe!t.(9(�xe.((^(P x))(Qx)))) exame!t)

�y.((acee!(e!t) y)x))))

Finally, when we normalise this lambda term, we obtain the following se-
mantics for this sentence.

(8(�xe.(() (studente!t x))(9(�ye.((^(exame!t y))((acee!(e!t) y)x)))))))

This lambda term represents the more readable higher-order logic formula2.

8x.[student(x) ) 9y.[exam(y) ^ ace(x, y)]]

2We have used the standard convention in Montague grammar of writing (p x) as p(x)
and ((p y)x) as p(x, y), for a predicate symbol p.

9

z0 := �P e!t.�Qe!t.(8(�xe.(() (P x))(Qx))))

z1 := gamblere!t

z2 := visite!(e!t)

z3 := �P e!t.�Qe!t.(9(�xe.((^(P x))(Qx))))

z4 := casinoe!t



LEXICAL SUBSTITUTION

((�P e!t.�Qe!t.(8(�ve.(() (P v))(Qv)))) gamblere!t)

(�x.((�P 0e!t.�Q0e!t.(9(�ze.((^(P 0 z))(Q0 z)))) casinoe!t)

�y.((visite!(e!t) y)x))))



NORMALISATION

((�P e!t.�Qe!t.(8(�ve.(() (P v))(Qv)))) gamblere!t)

(�x.((�P 0e!t.�Q0e!t.(9(�ze.((^(P 0 z))(Q0 z)))) casinoe!t)

�y.((visite!(e!t) y)x))))

 � (8(�xe.(() (gamblere!t x))(9(�ye.((^(casinoe!t y))((visite!(e!t) y)x)))))))



NORMALISATION

((�P e!t.�Qe!t.(8(�ve.(() (P v))(Qv)))) gamblere!t)

(�x.((�P 0e!t.�Q0e!t.(9(�ze.((^(P 0 z))(Q0 z)))) casinoe!t)

�y.((visite!(e!t) y)x))))

 � (8(�xe.(() (gamblere!t x))(9(�ye.((^(casinoe!t y))((visite!(e!t) y)x)))))))

⌘def 8x.[gambler(x) ) 9y.[casino(y) ^ visit(x, y)]]



LAMBEK AND MONTAGUE

• Montague’s strategy makes the apparent mismatch 
between syntax and semantics disappear.

• Syntax and semantics are developed in parallel.



PROBLEMS AND EXTENSIONS

• Most variants and extensions of the Lambek 
calculus agree on the “deep structure”, the 
(multiplicative, intuitionistic) linear logic proof used 
for the computation of semantics.

• However, the “surface structure” of these logics 
are rather different: different connectives, 
structures, operations… 
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Replacing all “easy” linear logic implications “(” by the corresponding
Lambek calculus implications (either “/” or “\” depending on whether the
corresponding argument is to the right or to the left) gives us the following.

John

np
Lex

read

(np\s)/np Lex
[np]1

np\s ( E

s
( E

yesterday

s\s Lex

s
( E

np ( s
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The “( I” rule can not be turned into a Lambek calculus introduction
rule, since the noun phrase hypothesis does not occur in a peripheral position.

Quantifier scope

Example (10) below illustrates that the Lambek calculus has problems with
quantifiers in medial position taking wide scope.

(10) John believes someone left.

This is one of the classic examples in semantics. Example (10) has two readings:
for the the first, called the “de dicto” reading, the verb “believes” has wider
scope than the quantifier “someone” (this can be true when John has heard
to door slam and concludes from this weak evidence that someone left; this
reading doesn’t commit the speaker to believing anyone left), for the second
reading, called the “de re” reading, there is a specific person, say Peter, whom
John believes has left (this does commit the speaker to believing someone has
left).

The narrow scope reading for “someone” is obtained from the following
deep structure.

John

np
Lex

believes

s ( (np ( s)
Lex

someone

(np ( s) ( s
Lex

left

np ( s
Lex

s
( E

np ( s
( E

s
( E

20

“John believes someone left”



DE DICTO/DE REProblems and Limitations

For the proof above, it is easy to replace the di↵erent occurrences of the
linear logic implication “(” by the Lambek slashes “\” and “/” in order to
obtain a Lambek calculus proof. However, the second reading has the following
deep structure.

someone
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left
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This deep structure again has a noun phrase in non-peripheral position,
and the Lambek calculus lacks a way of withdrawing the np from the middle
of the sentence (as for the medial extraction case) but also of “moving” the
quantifier “someone” back to the place of the withdrawn noun phrases.

Dutch verb clusters

Another classic example of a problem with the Lambek calculus is the treatment
of Dutch verb clusters (Moortgat & Oehrle 1994, Oehrle 2011), illustrated by
sentence such as the following.

(11) (dat) Jan Henk Marie de nijlpaarden zag helpen voeren.

This sentence exhibits the well-known crossed dependencies: “Henk” is the
object of “zag” (saw), “Marie” the object of “helpen” (help) and “de nijlpaar-
den” (the hippopotami) the object of “voeren” (feed), as shown in the deep
structure below.

zag

np ( (inf ( (np ( s))
Lex
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np
Lex

inf ( (np ( s)
( E
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np
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np ( (inf ( inf)
Lex
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Though Pullum & Gazdar (1982) show that such examples can be treated
by context-free grammars, and hence by the Lambek calculus, the Dutch verb
cluster analysis of mildly context-sensitive formalisms, which expresses the de-
sired dependencies between objects and verbs, is generally preferred. For ex-
ample, a fairly direct translation of the grammar given by Pullum & Gazdar
(1982) into a Lambek grammar gives the following proof for Sentence (11).

21

This is not the forgetful mapping of any Lambek calculus proof! 
(at least not given np\s for “left” and (np\s)/s for “believes”)

“John believes someone left”



DUTCH  VERB CLUSTERS
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“(dat Jan) Henk Marie de nijlpaarden zag helpen voeren”
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np\(np\s)
\E

np\s
\E

voeren

(np\s)\(np\(np\s)) Lex

np\(np\s)
\E

np\s
\E

“(dat Jan) Henk Marie de nijlpaarden zag helpen voeren”



GAPPING

studies
tv

Lex

John
np

Lex
[tv]1

logic

np
Lex

np ⊸ s
⊸ E

s
⊸ E

tv ⊸ s
⊸ I1

and
X ⊸ (X ⊸ X)

Lex

Charles
np

Lex
[tv]2

phonetics

np
Lex

np ⊸ s
⊸ E

s
⊸ E

tv ⊸ s
⊸ I2

X ⊸ X
⊸ E

tv ⊸ s
⊸ E

s
⊸ E

tv = np ( np ( s

X = tv ( s

= (np ( np ( s) ( s
<latexit sha1_base64="iWBLj1hJQ5wWKZ2/D/P1l9j25mk="></latexit>

“John studies logic and Charles phonetics” 



VP ELLIPSIS

John
np

Lex

left
vp

Lex

[vp]1

before
s ⊸ (vp ⊸ vp)

Lex

Mary

np
Lex

[vp]2

s
⊸ E

vp ⊸ vp
⊸ E

vp
⊸ E

vp ⊸ vp
⊸ I1

vp ⊸ (vp ⊸ vp)
⊸ I2

did
(vp ⊸ (vp ⊸ vp)) ⊸ (vp ⊸ vp)

Lex

vp ⊸ vp
⊸ E

np ⊸ s
⊸ E

s
⊸ E

vp = np ( s
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“John left before Mary did”



EXTENDING 
THE LAMBEK CALCULUS

• Grammar design in type-logical grammars can be 
viewed as a form of “reverse engineering” based 
on a semantic structure (i.e. a linear logic proof).

• Lambek grammars have only the option of 
choosing a direction for the slashes; other systems 
allow discontinuous dependencies.



GOING FURTHER

• The Lambek calculus gives a simple account of some 
elementary facts about the syntax-semantics interface.

• However, once we want to handle more complex 
examples, we run into problems.

• Many variants and extensions of the Lambek calculus 
have been proposed to solve these problems.



MODERN 
TYPE-LOGICAL GRAMMARS



MODERN TYPE-LOGICAL 
GRAMMARS

• We are looking for a logic which solves the problems 
with the Lambek calculus, while not sacrificing simplicity 
and good logical properties.

• Many solutions have been proposed, which makes 
comparisons different.

• There is a “family resemblance” between many of the 
proposed analyses, but can we make this more precise?  



MULTIMODAL

∆ ⊢ A •i B Γ[(A ◦i B)] ⊢ C

Γ[∆] ⊢ C
[•E] Γ ⊢ A ∆ ⊢ B

(Γ ◦i ∆) ⊢ A •i B
[•I]

Γ ⊢ A/iB ∆ ⊢ B

(Γ ◦i ∆) ⊢ A
[/E]

(Γ ◦i B) ⊢ A

Γ ⊢ A/iB
[/I]

Γ ⊢ B ∆ ⊢ B\iA

(Γ ◦i ∆) ⊢ A
[\E]

(B ◦i Γ) ⊢ A

Γ ⊢ B\iA
[\I]

Oehrle & Zhang (1989),  Moortgat & Morrill (1991),
Moortgat & Oehrle (1993,1994), Hepple (1994) 



MULTIMODAL

Marie ⊢ np

wil ⊢ (np\1s)/1inf
boeken ⊢ np lezen ⊢ np\2inf

boeken ◦2 lezen ⊢ inf
\E

wil ◦1 (boeken ◦2 lezen) ⊢ np\s
/E

Marie ◦1 (wil ◦1 (boeken ◦2 lezen)) ⊢ s
\E

Marie ◦1 (boeken ◦2 (wil ◦1 lezen)) ⊢ s
MC

Γ[∆1 ◦2 (∆2 ◦1 ∆3)] ⊢ C

Γ[(∆1 ◦2 ∆2) ◦1 ∆3] ⊢ C
MA

Γ[∆2 ◦2 (∆1 ◦1 ∆3)] ⊢ C

Γ[∆1 ◦1 (∆2 ◦2 ∆3)] ⊢ C
MC

For details, see Moortgat & Oehrle (1994), Oehrle (2011)



DISPLACEMENT CALCULUS

δ : A⊙B

[α1 + 1+ α2 : A]i [β : B]i
....

γ1 + α1 + β + α2 + γ2 : C

γ1 + δ + γ2 : C
⊙Ei

α1 + 1+ α2 : A β : B

α1 + β + α2 : A⊙B
⊙I

α1 + 1+ α2 : C ↑ B β : B

α1 + β + α2 : C
↑ E

[β : B]i
....

α1 + β + α2 : C

α1 + 1+ α2 : C ↑ B
↑ Ii

α1 + 1+ α2 : A β : A ↓ C

α1 + β + α2 : C
↓ E

[α1 + 1+ α2 : A]i
....

α1 + β + α2 : C

β : A ↓ C
↓ Ii



DISPLACEMENT CALCULUS

someone : (s ↑ np) ↓ s

a : np....
Mary + thinks + a+ left : s

Mary + thinks + 1+ left : s ↑ np
↑ I

Mary + thinks + someone + left : s
↓ E

Morrill, Valentin & Fadda (2011)



HYBRID TYPE-LOGICAL 
GRAMMARS

Γ ⊢ M : A ⊸ B ∆ ⊢ N : A
Γ,∆ ⊢ (M N) : B

⊸ E
Γ, x : A ⊢ M : B

Γ ⊢ λx.M : A ⊸ B
⊸ I

Γ ⊢ P : B ∆ ⊢ Q : B\A
Γ,∆ ⊢ P +Q : A

\E
w : B,Γ ⊢ w + P : A

Γ ⊢ P : B\A
\I

Γ ⊢ P : A/B ∆ ⊢ Q : B

Γ,∆ ⊢ P +Q : A
/E

Γ, w : B ⊢ P + w : A

Γ ⊢ P : A/B
/I



HTLG: GAPPING

studies ` tv

....
John+ x+ logic : s

�x.John+ x+ logic : tv ( s

�Q�P�v.(P v) + and+ (Q ✏) : X ( X ( X

....
Charles+ y + phonetics : s

�y.Charles+ y + phonetics : tv ( s
( I

�P�v.and+ Charles+ phonetics : X ( X
( E

�p.John+ p+ logic+ and+ Charles+ phonetics : tv ( s
( E

John+ studies+ logic+ and+ Charles+ phonetics : s
( E

<latexit sha1_base64="mIAMrqe+cwKg5lQddOQRO8Mw7Kk="></latexit>

Kubota & Levine (2012, 2020)



THE LOGIC OF SCOPE

Proof-theoretic aspects of NL�

Richard Moot

December 15, 2021

� ` C / B � ` B

� �� ` C
/E

(� �B) ` C

� ` C / B
/I

� ` A � ` A \ C
� �� ` C

\E
(A � �) ` C

� ` A \ C
\I

�[(A �B)] ` D

�[A •B] ` D
•E � ` A � ` B

(� ��) ` A •B •I

� ` C( B � ` B

�}� ` C
/E

(�}B) ` C

� ` C( B
/I

� ` A � ` A ) C

�}� ` C
\E

(A} �) ` C

� ` A ) C
\I

�[(A}B)] ` D

�[A ✓ B] ` D
•E � ` A � ` B

(�}�) ` A ✓ B
•I

⌅[(�} �x.�[x])] ` D

⌅[�[�]] ` D
�

⌅[�[�]] ` D

⌅[(�} �x.�[x])] ` D
��1

Table 1: The sequent calculus rules for NL�: structural rules

1
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....
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....
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( E

⌅[]
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(�x.M)N ⌘ M [x ::= N ]
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....
John � (saw � np) ` s
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��1
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)I

everyone} �x.(John � (saw � x)) ` s
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�
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MODERN TYPE-LOGICAL 
GRAMMARS

Logic Connectives Structure Operations
L /, •, \ list —
NL /, •, \ binary tree —
Multimodal /i, •i, \i labeled binary tree tree rewrites

♦j , □j labeled 1-2 tree tree rewrites
D L + ↑k, ⊙k, ↓k

∧, ∨ tuple of lists wrap
Lambda ⊸ lambda term β reduction
Hybrid L + ⊸ lambda term (list) β reduction
NLλ NL +$ , ⊚, % lambda term (tree) β reduction/expansion
LG NL + ⊘, #, " free tree graph rewrites



PROOF NETS



PROOF NETS

• Optimal (redundancy-free) representation of 
proofs in multiplicative linear logic (Girard 1987)

• Adapted to the Lambek calculus (Roorda 1991) 
and to multimodal categorial grammars (Moot & 
Puite 2002)

• What about other modern type-logical grammars?



PROOF NETS AND 
PROOF SEARCH

• Proof search for proof nets is very easy

1. Write down formula decomposition tree

2. Match atoms (leaves) of opposite polarity

3. Check correctness of underlying structure 
using graph rewriting



LINKS
t

1

[tL]

t

1

[tR]

[/L]

C

C / B B

[/R]

C / B B

C

[\L]

C

A \ CA

[\R]

A \ CA

C

[•L]

A B

A •B

[•R]

A •B

BA

[#L]

C

C# B B

[#R]

C# B B

C

[!L]

C

A ! CA

[!R]

A ! CA

C

["L]

A B

A " B

["R]

A " B

BA

Table 3: Links for NLλ proof structures

The basic idea is that tensor links build structure, whereas par links remove
it. This is clear when we compare the links to the logical rules with which they
share their label. For example, the /L rule of the sequent calculus, read from top
to bottom, creates as new structure with the connective ‘◦’ whereas the /R rule
removes a structural connective ‘◦’. The same holds for the other connectives,
with the tensor rule adding an occurrence of the structural connective of the
corresponding family (‘◦’ or ‘⊚’) and the par rule removing one.

Definition 2 A proof structure is a tuple 〈F,L〉, where F is a set of formula
occurrences and L is a set of the links shown in Table 3 where each local neigh-
bourhood respects the formulas shown in the table and such that:

• each formula is at most once the premiss of a link ,

• each formula is at most once the conclusion of a link.

The formulas which are not a conclusion of any link in a proof structure
are its hypotheses. The formulas which are not a premiss of any link in a

6

NL
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EXAMPLE: 
JOHN SAW EVERYONE

s

np ! s
s# (np ! s)

np

s

np \ s

(np \ s) / np np

np

snp s

Figure 1: Formula unfolding for “John saw everyone”.

proof structure are its conclusions. Formulas which are both a premiss and a
conclusion of a link are internal nodes of the proof structure.

We say a proof structure with hypotheses Γ and conclusions ∆ is a proof
structure of Γ ⊢ ∆, overloading the ⊢ symbol.

As an example, Figure 1 shows the formula unfolding of “John saw everyone”,
with “John” assigned np, “saw” (np \ s) / np, and “everyone” s# (np ! s) with
goal formula s. Given that this sentence is grammatical, we want to construct
a proof net of np, (np \ s) /np, s# (np! s) ⊢ s, for some structured antecedent Γ
which has the formulas in the indicated left-to-right order. However, Figure 1
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Figure 2: Formula unfolding for “John saw everyone” with identifications of
atomic formulas.

at the object np of the transitive verb. Essentially, this is a visual representa-
tion of the coindexation used for the introduction rules for the implications in
natural deduction. However, we still need a mechanism to ensure the !R rule
(corresponding to the par link) has been correctly applied. The premiss of this
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Definition 3 An abstract proof structure A is a tuple 〈V, L, h, c〉 where V is a
set of vertices, L is a set of the links shown in Table 4 connecting the vertices
of V , h is a function from the hypothesis vertices of A to formulas, and c is a
function from the conclusion vertices of A to formulas (a hypothesis vertex is a
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Figure 3: Proof structure (left) and abstract proof structure (right) for “John
saw everyone”.

vertex which is not the conclusion of any link in L, and a conclusion vertex is
a vertex which is not the premiss of any link in L).

The links for abstract proof structures are shown in Table 4. The the top
row shows the links for the 0-ary connective t, the second row shows the binary
tensor links, the third row shows the par links for the Lambek connectives, and
the bottom row shows the par links for the continuation connectives.

The λ tensor link is the only non-standard link. Even though it has the
same shape as the link for the Grishin connectives of Moortgat & Moot (2013),
it is used in a rather different way. The λ tensor link does not correspond to a
logical connective in NLλ. Rather, it corresponds to the λ constructor in NLλ

antecedent terms. As in multimodal proof nets, where tensor trees correspond
to sequents, here tensor graphs correspond to sequents.

Figure 3 shows how the proof structure on the left hand side is transformed
into an abstract proof structure on the right hand side. The procedure consists
simply of removing all formulas on the internal nodes. Vertices which are hy-
potheses of the abstract proof structure have the corresponding formula written
above the vertex, whereas vertices which are conclusions have the corresponding
formula written below them.

Definition 4 We say a proof structure, an abstract proof structure or one of
their substructures, is a tensor tree iff it is a tree containing only tensor links.

We say a substructure of a proof structure or of an abstract proof structure is
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Table 5: Contractions for NLλ.

labeled h (which is possibly a hypothesis of the abstract proof structure) and
the vertex labeled c (which is possibly a conclusion of the abstract proof struc-
ture) are distinct. The contractions replace the displayed pair of links by a
single vertex (deleting the two links and any internal nodes, while identifying
the nodes h and c).

The contractions are essentially a way of verifying the antecedent is in the
right configuration for the application of the corresponding sequent rule. In this
way the par link for !R and the contraction for !R work together to emulate
the !R rule of the sequent calculus.

Graphically, we can see that the configurations which allow us to perform
a contraction all connect a par link to a tensor link (respecting the left/right
distinction) by the tentacles of the par link which do not have the arrow. Each
contraction removes the two links (and the two internal nodes) while performing
a vertex contraction on the two external vertices.

The contraction for [tL] looks a bit strange, but it is essentially the [•L]
contraction with the two branches removed (t is a 0-ary connective, whereas •
is a binary one). It therefore creates a new connection while identifying h and
c.

Figure 4 shows a ‘sugared’ version of the conversion for the β and β−1

rules for abstract proof structures. They have the side condition that the path
through Γ (from x to z on the left hand side and from the anonymous nodes at
the top and bottom of Γ at the right hand side) does not pas through any par
links. Like the corresponding structural rules, β−1 moves the constituent x out
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STRUCTURAL RULES: 
SUGARED VERSION
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Figure 4: Structural rule for NLλ, ‘sugared’ version.
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Table 6: Structural rules for NLλ.

and marks its position using a lambda binder, whereas β moves x back to the
placed marked by the abstracted variable.

Table 6 shows the full set of structural rules. The side conditions on the β
and β−1 rules are that the node labeled c1 is a descendant of the node labeled
h2 through a path not passing through any par links — the side condition
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and marks its position using a lambda binder, whereas β moves x back to the
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Table 6 shows the full set of structural rules. The side conditions on the β
and β−1 rules are that the node labeled c1 is a descendant of the node labeled
h2 through a path not passing through any par links — the side condition
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Figure 5: Abstract proof structure of Figure 3 before and after the β−1 struc-
tural conversion.

A −→
A A

▪
A

For the tR rule, we unfold the conclusion formula t to obtain the proof struc-
ture shown below on the left, and it corresponds immediately to the abstract
proof structure of 1 ⊢ t, as required.

t

1

−→
A

▪
t

1

For the inductive cases, we use the induction hypothesis to obtain proof nets
(and rewrite sequences) for the immediate subproofs, add the appropriate link
(for the logical rules of the connectives), extend the rewrite sequence with the
appropriate conversion (a contraction whenever we add a par link, and a struc-
tural conversion for the structural rules).

We show only the tL,#R and β−1 cases, the other cases are similar.

tL For the tL rule, induction hypothesis gives us a proof net of Γ[1] ⊢ D. That
means we have a way to construct a proof structure Π with the formulas
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Figure 6: Abstract proof structure of Figure 5 after the ! contraction.

of Γ as its hypotheses, D as its conclusion, and a rewrite sequence ρ
converting the abstract proof structure corresponding to Π into Γ[1] ⊢ D.
Graphically, we are therefore in the following situation (where we tacitly
convert proof structure Π to its corresponding abstract proof structure
A(Π) before applying the conversions in ρ).

Π

D

Γ[]

▪

1

▪
D

↠
ρ

We need to produce a proof net of Γ[t] ⊢ D. The proof net therefore needs
to have an additional t hypothesis, and in the final structure this hypoth-
esis needs to be at the position where 1 was in the proof net obtained
by induction hypothesis. We add a t as the hypothesis of a tL link. We
then apply the rewrites in ρ as before and end with the tL contraction to
produce a proof net of Γ[t] ⊢ D as follows.
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Table 7: Derived rules for NLλ.

the derived rules reduces the number of par links and is therefore bounded in
its number of applications. The β−1! rewrite rule has the side condition that
the there is a path from node c1 to node h which passes only through tensor
links (this is the standard condition on the β−1 rule).

Given that each of the rules reduces the size of the abstract proof structure
(according to Definition 5, replacing a par link by a tensor links amounts to a
size reduction) showing decidability is easy. However, we can do a bit better

24

Condition: h must be an ancestor of c1 by a path which
does not pass any asynchronous (par) links 

We can, without loss of generality, replace the beta
expansion rule by the following rule (a proof net
refection of the same principle of Barker 2019)
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Figure 18: Formula unfolding for “everyone read the same book”.

label of the corresponding word, so, for example, “the” denotes the formula
np / n.

We identify the atomic formulas of the structure to obtain the proof structure
shown on the left of Figure 19. The par link of “everyone” forms a redex with
the bottom tensor link of “same”, the topmost par link of “same” will ensure
that “everyone” appears as the subject, whereas the other par link of “same”
has its position determined by the place of the adjective subformula n/n, which
appears between “the” and “book”, since this is where we want the word “same”
to end up.

The corresponding abstract proof structure is shown on the right of Fig-
ure 19. This should by now be familiar: all internal formulas have been removed
and only the hypotheses and conclusions of the structure are still assigned for-
mulas.

To show this is a valid proof net, we have to convert the abstract proof
structure of Figure 19 to a tree of Lambek (singly circled) tensor links, using
the contraction rules of Table 5, the structural rules of Table 6. There easiest
way to do this, it to use the rewrite rules of Table 6 from left to right only and
to use the derived ��1) rule of Table 7, following the discussion in Section 4.

We start with the )R contraction, which produces the abstract proof struc-
ture shown on the left of Figure 20. There are no further contractions possible,
so we apply the ��1) conversion to the two remaining )R par links to obtain
first the structure shown in Figure 20 on the right, then the structure shown in
Figure 21 on the left.

9
It permutes with the structural rules as well, but these rule permutations do not corre-

spond the term equations.
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Figure 19: Proof structure (left) and the corresponding abstract proof structure
(right) for “everyone read the same book”.

We are now in the situation where we can apply the � conversion twice in
succession, first putting “same” in the right place, , as shown in Figure 21 on
the right, then “everyone” as shown in Figure 22. This is a Lambek tree with
the required yield “everyone read the same book”. We have therefore shown
that the proof structure back in Figure 19 is a proof net.
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EVERYONE READ THE SAME BOOK

⇧

read ⇧

⇧

⇧
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⇧

⇧

⇧

same

everyone
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⇧

⇧

same

everyone

Goal

Figure 20: The abstract proof structure on the right of Figure 19 after the )R
contraction (left) and after the ��1) conversion (right).
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Figure 21: The abstract proof structure of Figure 20 after the ��1) contraction
(left) and the � conversion (right).
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Figure 22: Final tree computed after � reduction from the abstract proof struc-
ture on the right of Figure 21.
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Example proof structure

Given lexical entries ‘everyone’ with formula (np ( s)( s and
‘sleeps’ with for np ( s, formula unfolding produces the following.

s

np ( severyone

@

np

�

s

s

npsleeps

@
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studies ` tv
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Example proof structure

Connecting the np and s atomic formulas produces the following
proof structure from the types of ‘everyone’ and ‘sleeps’ to the
type s.
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Converting a proof structure to an abstract proof structure
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Figure 4: Structural rule for NLλ, ‘sugared’ version.
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Table 6: Structural rules for NLλ.

and marks its position using a lambda binder, whereas β moves x back to the
placed marked by the abstracted variable.

Table 6 shows the full set of structural rules. The side conditions on the β
and β−1 rules are that the node labeled c1 is a descendant of the node labeled
h2 through a path not passing through any par links — the side condition
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Figure 9: Combination of the β−1 rule and the !R contraction.
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Table 7: Derived rules for NLλ.

the derived rules reduces the number of par links and is therefore bounded in
its number of applications. The β−1! rewrite rule has the side condition that
the there is a path from node c1 to node h which passes only through tensor
links (this is the standard condition on the β−1 rule).

Given that each of the rules reduces the size of the abstract proof structure
(according to Definition 5, replacing a par link by a tensor links amounts to a
size reduction) showing decidability is easy. However, we can do a bit better
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HTLG proof structure

s
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np
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λ

▪
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HTLG reduced abstract proof structure
everyone

▪

λ

s

np

s

▪
everyone

@

β
→

A
→

Figure 11: Proof structure, abstract proof structure and β-reduced abstract
proof structure for a quantifier in HTLG.

string x (corresponding to the subject) to the string saw followed by the string
y (corresponding to the object noun phrase).

The key entry is the lexical entry for “everyone”. It is assigned the linear
logic formula (np ⊸ s) ⊸ s. Syntactically, is takes a sentence missing a noun
phrase as an argument to produce a sentence. Prosodically it is a function of
type (s → s) → s, which we assign the term λP.(P everyone). This means it
takes a function from strings to strings as an argument (in this particular case
the string of a sentence missing a noun phrase string) and fills this position with
the word everyone.

5.1 Translations of links and rewrites

We begin by a simple illustration to make the similarities immediate.
Unfolding the HTLG lexical entry for everyone with syntactic type (np ⊸

s) ⊸ s and prosodic type λP.(P everyone) produces the proof structure shown
on the left of Figure 11. As usual, tensor nodes are drawn with an open central
circle whereas par nodes are drawn with a filled central circle; the mode of
the the link is indicated by an index (for binary links the indices are ‘+’ for
Lambek calculus links, and ‘@’ and ‘λ’ for lambda grammar links, respectively
corresponding to application and abstraction at the term level). The premisses
of a link are written left-to-right above the central node, their conclusions left-
to-right below them.

The corresponding abstract proof structure is shown in the middle of Fig-
ure 11. As usual, the A arrow denotes the conversion of a proof structure to an
abstract proof structure. It removes formula information from internal nodes
and replaces the lexical leaf (np ⊸ s) ⊸ s by a graphical representation of
the lambda term λP.(P everyone), where the binding of P is indicated by the
curved edge from the lambda tensor node to the left premiss of the @ tensor
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NLλ proof structure

s

np ! s
s# (np ! s)

np

s

NLλ abstract proof structure

s

▪
everyone

np

s

A
→

Figure 12: Proof structure and abstract proof structure for a quantifier in NLλ.

node — just like the lambda abstractor link for NLλ proof nets indicates its
bound variable, although the order of the conclusions differs between HTLG
and NLλ proof nets. Using a partial evaluation strategy — introduced in the
context of Lambek calculus semantics by Morrill (1999) and by de Groote & Re-
toré (1996) — we can then reduce the beta redex in this abstract proof structure
to produce the structure on the right, as indicated by the β arrow.

For the quantifier in NLλ, which is assigned the formula s# (np ! s), we
produce the proof structure shown on the left of Figure 12 and the abstract
proof structure shown on the right of the figure.

The two abstract proof structures are left-right symmetric. This is a conse-
quence the different notational choices, with Barker (2019) having the ‘functor’
of an ‘application’ on the right, and Kubota & Levine (2020) having it on the
left. This left-right symmetry applies only for the continuation connectives, the
Lambek calculus connective of both calculi are identical.

The translation between the quantifier lexical entries is no accident. There
is a simple equivalence between many of the links and rewrites in both logics.
Table 8 shows the translations between HTLG and NLλ. Elements of one logic
which have no direct translation in the other are marked as ‘???’ in the logic
where this element is missing.

The λ tensor link (used to represent the prosodic lambda terms from the
lexicon, as shown, for example, in the abstract proof structure in the middle of
Figure 11) does not have a direct translation into NLλ formulas: in NLλ, the λ
tensor link appears only in antecedent terms (however, it appears that we can
emulate most and maybe even all of this functionality judiciously using atomic
formulas and the !R rule to simulate extraction, see Appendix 5.4 for examples
and discussion). Inversely, the par links for# and " in NLλ (and their logical
contractions) have no direct translation into HTLG.

However, there are many similarities. Besides the shared links and contrac-
tions for the Lambek calculus implications, the key element of similarity is the
presence of the β rewrite in both logics and the fact that the λ par rewrite in
HTLG is equivalent to the β−1! rewrite of Table 7, with identical constraints
on the rule application.
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TRANSLATIONS

HTLG NLλ

+ link ↔ ◦ link
@ with premisses p1 − p2 ↔ ⊚ with premisses p2 − p1
λ tensor (lexicon) ???
λ par with conclusions c1 − c2 ↔ ! par with conclusions c2 − c1
??? t,#, " par links
contractions for /, \ ↔ contractions for /, \
??? contraction for •
λ par rewrite ↔ β−1! rewrite
β rewrite ↔ β rewrite
η rewrite ↔ contraction for !
??? contractions for t,#, "

Table 8: Translations between HTLG and NLλ.

Lemma 14 When NLλ and (non-associative) HTLG lexical entries reduce to
isomorphic (with respect to left-right symmetry of the continuation/linear links)
abstract proof structures and require only the β, β−1!/⊸ I, 1◦, ◦1, !R/η, \R,
\R rewrites, then these lexical entries are logically equivalent.

The same equivalence holds between NLλ with added associativity (Lλ) and
standard, associative HTLG, when adding the associativity rewrites to both proof
net calculi.

Proof Given that we produce isomorphic structures by assumption and that
all the rewrite rules which can apply are equivalent as well, this is trivial. ✷

As a consequence of Lemma 14, many of the signature linguistic analyses
proposed in the respective formalisms can be translated between the formalisms
with ease. For each of these cases, we not only have equivalence at the level
of the abstract proof structures, but also at level of the graph rewrites which
apply to them. So in spite of the difference in logical foundations, the analyses
proposed for these two logics converge in many interesting cases.

5.2 Gapping

Gapping is a phenomenon which has received a lot of attention in the categorial
grammar literature (Hendriks 1995, Morrill et al. 2011, Kubota & Levine 2012).
The basic idea is that sentences like the following can be analysed as a type of
coordination.

(1) John studies logic, and Charles phonetics.

In the sentence above, the intended meaning is equivalent to the meaning of
“John studies logic and Charles studies phonetics”, with the word “studies”
missing syntactically from the second conjunct.
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Figure 13: Abstract proof structure of the lexical entry for gapping from Kubota
& Levine (2020), before and after β reductions.

Kubota & Levine (2012, 2020) propose the formula (tv ⊸ s) ⊸ (tv ⊸ s) ⊸
tv ⊸ s with prosodic term λQ.λP.λv.(P v) + and + (Q &) for the coordinator
‘and’ in gapping constructions (where tv is short for (np\s)/np). The idea of this
lexical entry is that it selects two sentences, each missing a transitive verb tv,
then selects a transitive verb and inserts it in the leftmost sentence, whereas in
the rightmost sentence the missing transitive verb is assigned the empty string
at the term level. The advantage of such an analysis is that it is now easy to
get the desired semantics of the sentence.

Looking at this lexical entry in terms of proof nets, the abstract proof struc-
ture corresponding to this formula and its assigned term is shown in Figure 13
(the occurrences of tv have not been unfolded). The three λ links correspond
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ture corresponding to this formula and its assigned term is shown in Figure 13
(the occurrences of tv have not been unfolded). The three � links correspond
to the abstractions over Q (corresponding to the rightmost sentence missing a
transitive verb), P (corresponding to the leftmost one) and v (corresponding to
the transitive verb). This is again just a graphical way to represent the lambda
term assigned to the lexical entry. The unfolding of the lexical formula and
its prosodic term has again produced an abstract proof structure which can be
further reduced by beta reduction. After performing the three beta reductions,
we obtain the abstract proof structure shown below on the right.

We can obtain the NL� formula corresponding to this abstract proof struc-
ture by first mirroring the premisses of the @ links and the conclusions of the
� par links, then taking as the main formula of each link the vertex closest to
the lexical leaf “and”. This entails that the two @ links become continuation
product formulas in NL�. Completing the computations produces the formula
((tv✓ (tv) s)) \ s)/(t✓ (tv) s)). Although it is rather similar to the analysis of
Morrill (1994, Section 3.4), this formula doesn’t look like a typical coordination
formula. Compared to the HTLG formula and the formula of Morrill et al.
(2011, Section 3.2.6), it uses a form of de-Currying on the last two arguments
((tv ) s) and tv) (although this is not a derivable form of de-Currying since it
mixes the Lambek and continuation modes).

5.3 Parasitic scope: “same” and “di↵erent”

Words like “same” and “di↵erent” allow what Barker & Shan (2014) call ‘para-
sitic scope’. Take the following sentences, for example.

(2) Everyone read the same book.

(3) Everyone read di↵erent books.

(4) No one read the same book.

(5) The same waiter served everyone.

The reading of Sentence (2) is that everyone read some books, and that there
is one specific book read by everyone. Sentence (3), on the other hand, has the
meaning that everyone read some set of books, but that these sets of books are all
disjoint. Sentences (3) and (4) have essentially the same meaning. Sentence (5)
shows that the same type on phenomenon is possible with “same” occurring in
the subject and when “everyone” is the object.

Barker & Shan (2014) propose the formula (np) s)( ((n \ n)) (np) s)) for
the word “same” to get the required semantic readings. It is an adjective n \ n
lifted with respect to the formula np ) s using the continuation mode. This
allows it to function locally as an adjective, while taking scope over the same
np ) s formula as selected by a quantifier. A fully worked out example with
“same” can be found in Appendix C.

Unfolding this formula produces the proof structure and abstract proof struc-
ture shown respectively on the left and right of Figure 14. To reduce complexity,
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▪
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▪np

s
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Figure 14: Proof structure and abstract proof structure of the word “same”
according to the analysis of Barker & Shan (2014)

By its structure, we know the prosodic type should be (s → s → s) → s → s.
Given a constant ‘same’ of type s, there are two linear lambda terms of this
type (slightly more when we add constants ‘+’ and ‘&’). In general, there can be
many choices for the linear lambda term and choosing the correct one (to obtain
a given abstract proof structure) can be tricky. This is because it is easier to
evaluate a program (i.e. reduce a lambda term) than to construct one given its
output.

In this case, it is easy to see the prosodic term should be λP.λx.((P same)x).
The abstract proof structure for this lexical entry is shown on the left of Fig-
ure 15. Performing the two beta reductions produces the abstract proof struc-
ture shown on the right of the figure.

The abstract proof structure on the right of Figure 15 is again the left-right
symmetric version of the abstract proof structure for “same” in NLλ shown in
Figure 14.

5.4 Dutch verb clusters

One well-studied topic in linguistics and formal language theory are the crossed
dependencies which occur for verb clusters and their objects in Dutch relative
clauses. The complexity of the phenomenon is illustrated by the famous ‘hip-
popotamus’ sentences such as the following.

(6) (dat)
(that)

Jan
Jan

Marie
Marie

de
the

nijlpaarden
hippopotami

zag
saw

voeren
feed

‘(That) John saw Marie feed the hippopotami’

(7) (dat)
(that)

Jan
Jan

Henk
Henk

Marie
Marie

de
the

nijlpaarden
hippopotami

zag
saw

helpen
help

voeren
feed
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Figure 15: The analysis of “same” from Barker & Shan (2014) translated into
HTLG.

‘(That) John saw Henk help Marie feed the hippopotami’

The key point of Sentence (7) is the “de nijlpaarden” (the hippopotami) is the
object of “voeren” (feed), “Marie” the object of “helpen” (help), and “Henk”
the object of “zag” (saw), leading to ‘crossed’ dependencies between the verbs
and their objects, which is essential to produce the right meaning under the
standard (minimal) type-logical assumptions of the syntax-semantic interface.

Unlike the previous cases, we cannot directly apply Lemma 14 here: the
HTLG lexical items shown below crucially use lexical lambda terms which can-
not be reduced directly in the abstract proof structures corresponding to the
lexical unfolding.

However, there is a work-around for this problem. Given the following NLλ
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Figure 14: Proof structure and abstract proof structure of the word “same”
according to the analysis of Barker & Shan (2014)

the subformula n\n has been not unfolded.
Translating the formula to HTLG produces the following formula.

((n\n) ( np ( s) ( np ( s

By its structure, we know the prosodic type should be (s ! s ! s) ! s ! s.
Given a constant ‘same’ of type s, there are two linear lambda terms of this
type (slightly more when we add constants ‘+’ and ‘✏’). In general, there can be
many choices for the linear lambda term and choosing the correct one (to obtain
a given abstract proof structure) can be tricky. This is because it is easier to
evaluate a program (i.e. reduce a lambda term) than to construct one given its
output.

In this case, it is easy to see the prosodic term should be �P.�x.((P same)x).
The abstract proof structure for this lexical entry is shown on the left of Fig-
ure 15. Performing the two beta reductions produces the abstract proof struc-
ture shown on the right of the figure.

The abstract proof structure on the right of Figure 15 is again the left-right
symmetric version of the abstract proof structure for “same” in NL� shown in
Figure 14.

Kubota & Levine (2020, Section 5.3.2) propose a di↵erent analysis of “same”
and “di↵erent” in hybrid type-logical grammars. However, the current transla-
tion of the analysis of Barker & Shan (2014) into hybrid type-logical grammar
facilitates a comparison between these di↵erent approaches (see also Kubota &
Levine 2020, Section 5.4.2.1, for discussion of some empirical di↵erences between
the two analyses).
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Figure 14.
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The analysis of “same/
different” from Barker & 
Shan (2014) translates 
into HTLG as follows



TRANSLATIONS
Dutch verb clusters in NLλ

lexicon, we generate exactly the correct readings.

dat sthat / ssub

Jan np

Henk np

Marie np

de np / n

nijlpaarden n

zag (np \ (np \ ssub))# (j ! inf)

helpen j \ ((np \ inf)# (j ! inf))

voeren j \ (np \ inf)

The key property is that we use a special atomic formula j to mark a point for
future extraction. In the lexical entry for “voeren”, when combined with all its
arguments will produce the structure (de ◦ nijlpaarden) ◦ (j ◦ voeren) with j the
left sister of voeren. The following proof shows how we combine this phrase with
“Marie” and “helpen” (to save space, we have abbreviated (de ◦ nijlpaarden) by
dn).

j ⊢ j
Ax

....
dn ◦ (j ◦ voeren) ⊢ inf

j ⊚ λx.dn ◦ (x ◦ voeren) β−1

λx.dn ◦ (x ◦ voeren) ⊢ j ! inf
!R

....
Marie ◦ np \ inf ⊢ inf

Marie ◦ (((np \ inf)# (j ! inf))⊚ λx.dn ◦ (x ◦ voeren)) ⊢ inf
#L

Marie ◦ ((j ◦ helpen)⊚ λx.dn ◦ (x ◦ voeren)) ⊢ inf
\L

Marie ◦ (dn ◦ ((j ◦ helpen) ◦ voeren)) ⊢ inf
β

We can see that “Henk” is concatenated before “de nijlpaarden” whereas the
insertion point ‘j’ is replaced by “j◦ helpen” together with, effectively putting
“helpen” before “voeren” and creating a new insertion point before “helpen”.

Reading the proof as backward chaining proof search, we start by moving
(j ◦ helpen) between “Marie” and “de nijlpaarden”. We then use the \L rule to
combine “helpen” with its j argument. This produces the subproof j ⊢ j and
replaces (j ◦ helpen) by ((np \ inf)# (j ! inf) in the other proof branch. In that
branch, we can immediately apply the#L rule. The right branch is a trivial NL
derivation. The left branch uses the standard combination of !R and β to move
the j formula in the place from where we moved out (j ◦ helpen) at the start of
the proof. We can then complete the proof using the NL rules.

Figure 16 shows the only abstract proof structure for Example (7) (at least
the only one which produces the correct noun phrase order). We leave the
reader to verify for herself that two applications of the β−1! conversion and
two applications of the β conversion produce a tree with the right yield.

This analysis is extremely close to the Displacement calculus analysis of
Morrill et al. (2011, Section 3.2.8) when we translate A# (j !B) by B \w A and
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Figure 16 shows the only abstract proof structure for Example (7) (at least
the only one which produces the correct noun phrase order). We leave the reader
to verify that two applications of the ��1) conversion and two applications of
the � conversion produce a tree with the right yield.

This analysis is extremely close to the Displacement calculus analysis of
Morrill et al. (2011, Section 3.2.8) when we translate A( (j )B) by B \w A and
j by J .

zag inf \w (np \ (np \ ssub)
helpen J \ (inf \w (np \ inf))
voeren J \ (np \ inf)

The key logical rule which makes this analysis work is the following4.

�1, J,�2 ` A �1, C,�2 ` C

�1,�1, A \w C,�2,�2 ` C
L\w

The L\w rule allows a formula A\wC to select the �1 and �2 structures which
surround it, while marking the separation between the two with J . In the
Displacement calculus, the NL� proof above looks as follows.

J ` J
Ax

....
dn, J, voeren ` inf

....
Marie, np \ inf ` inf

Marie, dn, inf \w (np \ inf), voeren ` inf
L\w

Marie, dn, J, helpen, voeren ` inf
\L

The comparison with hybrid type-logical grammars is also instructive. The
following lexicon allows HTLG to analyse the Dutch verbs (the other lexical
entries stay the same). The atomic type inf is assigned the complex prosodic
type s ! s. The abstracted variable v plays the same role as the j atomic
formula in NL� and as the J formula in the Displacement calculus.

Word Syntactic type Prosodic term

zag inf ( np ( np ( s �P s!s�xs�ys.x+ y + (P zag)
helpen inf ( (np ( inf) �P s!s�xs.�vs x+ P (v + helpen)
voeren np ( inf �x�v.x+ v + voeren

With these lexical entries, the phrase “de nijlpaarden voeren” is assigned
the term �v.de+ nijlpaarden+ v + voeren. Then giving “helpen” this infinitive
and “Marie” as arguments produces a term which normalises to the following.

�v.Marie+ de+ nijlpaarden+ v + helpen+ voeren

Finally, applying this term and “Jan” and “Henk” to “zag” produces the re-
quired string.

4
The rule presented here is simplified from the rule of Morrill et al. (2011). However, this

simplification does not a↵ect the analysis.
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Compare: Morrill e.a. (2011)
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Figure 17: Abstract proof structure for the HTLG analysis of “(dat) Jan Henk
Marie de nijlpaarden zag helpen voeren”.

5.5 Formal language

The standard classes of formal languages For reasons of space, we only
give a very brief introduction of formal language classes here, we refer the reader
to Kallmeyer (2010) and references therein for more detail. Figure 18 shows the
standard classes for formal languages between the context-free language (CFL)
at the bottom and the context-sensitive languages (CSL) at the top. Multiple
context-free grammars (Seki et al. 1991) extend context free grammar by hav-
ing non-terminals denote tuples of strings (instead of strings for context-free
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Figure 16: Abstract proof structure for the NLλ analysis of “(dat) Jan Henk
Marie de nijlpaarden zag helpen voeren”.

However, there is an important difference in the two analyses: the β−1!
rewrite, which produces the λ link in NLλ, requires the !R par link (it is
produced by the positive j! inf subformula of “zag” and “helpen”; the topmost
par link is part of the lexical entry for “helpen” and the bottom par link is
par of the lexical entry for “zag”) whereas in the HTLG analysis λ links are
come from the lexicon (the topmost lambda link is part of the lexical entry
for “voeren”, the bottom lambda link of the lexical entry for “helpen”). So
although the abstract proof structures end up as equivalent, the lexical entries
divide the links in different ways.
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CONCLUSIONS

• Despite starting with different primitives, HTLG 
and NLλ produce structures which are related by a 
simple isomorphism for many of their key linguistic 
analyses. 



CONCLUSIONS
• There appears to be a “common core” of 

phenomena which can be handled by most type-
logical grammars.

• Differences around the edges: higher-order lambda 
terms allow expressivity which appears to be out 
of reach for the Displacement calculus; the 
Displacement calculus can refer to the linear order 
of gaps.



CONCLUSION

• Single overarching proof theory for monder type-
logical grammars

• We can add different “packages”: associativity, beta 
reduction, wrap

• Makes correspondence between many analyses in 
different formalisms clear



FUTURE WORK
• Implementation of the graph based formalism in its 

full generality (using existing graph rewrite tools)

• Beyond the multiplicative fragment?

• More precise relations between different logics and 
grammars

• Formal language theory?
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