GRAPH REWRITING

AS A

UNIVERSAL PROOF THEORY

MOD

RN Y

FOR

PE-LOGICAL GRAMMARS

Richard Moot (CNRS, LIRMM)
MALIN/LACompLing 16-12-202

INTRODUCTION:
LANGUAGE AND LOGIC

LANGUAGE AND LOGIC

* Logic textbooks often start with an introduction

relating the meaning of certain sentences (eg.

“every natural number has a successor’’, “for all

epsllon greater t

Nd

than zero such t

d

n zero there Is a delta greater

...) to logical formulas.

THE BASIC QUESTIONS

- Formal semantics Can we translate all (or; at the

very least, most) of natural language into first- or higher-

order logic In a way which respects the meaning!

- Type-logical grammar/categorial grammar
How can we Integrate natural language syntax and

semantics In a way that such a program of formal

semantics can be worked out?

TRANSLATING TO LOGIC

|, every natural number has a successor

VX natural_number(x) — 3y successor(x,y)

2. every gambler visited a casino

Vx gambler(x) — 3y casino(y) A visit(xy)

TRANSLATING TO LOGIC

|, every natural number has a successor

VX natural_number(x) — 3y successor(x,y)

2. every gambler visited a casino

Vx gambler(x) — 3y casino(y) A visit(xy)

TRANSLATING TO LOGIC

|, every natural number has a successor

VX natural_number(x) — 3y successor(x,y)

2. every gambler visited a casino

Vx gambler(x) — Iy casino(y) A VISIt(X,y)

TRANSLATING TO LOGIC

|, every natural number has a successor

VX natural_number(x) — 3y successor(x,y)

2. every gambler visited a casino

Vx gambler(x) — 3y casino(y) A visit(xy)

TRANSLATING TO LOGIC

|, every natural number has a successor

VX natural_number(x) — 3y successor(x,y)

2. every sambler visited a casino

VX gambler(x) = 3y casino(y) A VIsit(x,y)

TRANSLATING TO LOGIC

|, every natural number has a successor

VX natural_number(x) — 3y successor(x,y)

2. every gambler visited a casino

Vx gambler(x) — 3y casino(y) A visit(xy)

TRANSLATING TO LOGIC

» Many of the words corresponding (at least more
or less) to the standard logical connectives “no’,
“all”,"some’ but also "didn't” seem to have a sort
of mismatch between the natural language
sentence and the corresponding formula

 How can we "‘fix’ this mismatch!?

TRANSLATING TO LOGIC

 How can we "‘fix’ this mismatch!?

Joachim Lambek Richard Montague
(1922-2014) (1930-1971)

THE LAMBEK CALCULUS

A/B B B B\A
a /F a \F
By Bl .

A A
a5’ VS

THE LAMBEK CALCULUS

A/B B B B\A

E E
A / A \
;;/en Lew Stu?zent e slept

n /B n I\)s e

£ PV \E

EVERY GAMBLERVISITED A CASINO

every cambler visited q casino

(s/(np\s))/mn n (np\s)/np ((s/np)\s)/n n

EVERY GAMBLERVISITED A CASINO

every cambler

(8/(np\s))/n n visited a casino

s T s/ (JmNain

EVERY GAMBLERVISITED A CASINO

every cambler a casino

(s/(np\s))/n_ m visited ((s/np)\s)/n_ n

Jmos) ' o\ (/s T

EVERY GAMBLERVISITED A CASINO

every gambler a casino

(8/(np\s))/n n visited ((s/mp)\s)/n n

s Y o\ o (s E

EVERY GAMBLERVISITED A CASINO

cvery gambler visited a casino

(s/(np\s))/n = (np\s)/np np /B ((s/np)\s)/n_ n

s E T s (Jps ' ©

EVERY GAMBLERVISITED A CASINO

every gambler visited a casino
(s/(np\s))/n n (np\s)/np np ((s/np)\s)/n ~ n
o T T ae 1T T (s

/E

EVERY GAMBLERVISITED A CASINO

visited
every gambler (np\s)/np np 5 a casino
(s/(np\s))/n n g np\s \B ((s/mp)\s)/n_ n IE

s/ (np\s) s (s/np)\s

EVERY GAMBLERVISITED A CASINO

visited
(np\s)/np [np]*
every gambler np np\ s \E /E - G
(s/(np\s))/n n S ((s/mp)\s)/n_ n

/E

/T

/E

s/ (np\s) (s/np)\s

s/mp

EVERY GAMBLERVISITED A CASINO

visited
(np\s)/np [np]' /B
np np\s \E a casino
every gambler S I ((s/np)\s)/n n /B
D/ 0 EIIE

s/ (np\s) s

EVERY GAMBLERVISITED A CASINO

visited
(np\s)/np [np]' /B
[nP]z np\s \E a casino
o /),
every gambler s/np (s/np)\s \B
/N, Y
s/(np\s) np\s

EVERY GAMBLERVISITED A CASINO

visited
2 (np\s)/np_ [np]* /B
np np\s \E a casino
o ((s/np)\s)/n "B
every gambler s/np (s/np)\s \B
(s/(np\s))/n_ m IE S\
s/(np\s) np\s /bf

EVERY GAMBLERVISITED A CASINO
"DEEP STRUCTURE"

L EIUEL B

S B n—o((np—s5) —8) n
np—os_oll (np —o s) —o s B
n—o ((np—os) —os) n . o F
(np —o 8) —o s np —o s
S — b

The Lambek calculus 1s the inturtionistic, multiplicative,
non-commutative fragment of linear logic. It we replace
“/"and "\" by "—o " we obtain a linear logic proof.

semantics

SYNTACTIC TYPES TO
SEMANTIC TYPES

np" = e

n"-=e—t

st =t
(A—o B)"=A" - B”

(np—o(np—os))*:e%(eét)
(np —o 8) —0 s)x = (e > t) =t
(n—o(np—os)—os))*:(eﬁt)%((eﬁt)%t)

SEMANTIC DERIVATION AND
L AMBDA TERM

[] ()e—>[7;ye] — E
X ((Z2 y) ;)?Z — F Zée—>t)—>(e—>t)—>t Z4e_>t
F T CE G
Zoe—>t —(e—>t)—t Ze_>t ((.))\y« y)))t \
(20 21)(20~t b Az.((23 24) \y.((22y) 7)) 7" _) ;2,
((20 21) (Az.((23 24) Ay.((22 ¥) ©))))*

THE LEXICAL MEANING OF "EVERY"

(n_o(np—os)—OS))*:(G%t)%((B%t)%t)

APEEAQT (YD et (=07 (P a))(Qa))))

THE LEXICAL MEANING OF "EVERY"

APEEAQT (YD et (=07 (P a))(Qa))))

AP ANQCT V2l [(Px) = (Qx)

THE LEXICAL MEANING OF "EVERY"

APEEAQT (YD et (=07 (P a))(Qa))))
AP ANQCT V2l [(Px) = (Qx)

APt ANQT (P C Q)

THE LEXICAL MEANING OF "A”

)\Pe—>t.)\Qe—>t.(E|(e >t) >t(>\xe.((/\t >(t t)(Pm))(QZB))))
APS7PANQC7 Az [(Px) A (Q2)]

AP7PAQET(PNQ) #(

LEXICAL SUBSTITUTION

((20 21) (Az.((23 24) Ay.((229) 7))))

20 1= APTEAQT.(V(A€ ((= (P) (Q2))))

/
21 1= gambler®™

2 1= visite (et

23 1= APTAQT.3(AC (AP) (Q 2))))

24 1= casino®

LEXICAL SUBSTITUTION

(APTEAQT.(V(M . ((= (Pv))(Q)))) gambler®™")
(A2 (AP7EAQ (A" (AP 2))(Q 2)))) casino®")

Ay ((visit” €70 y)))))

NORMALISATION

(APTTEAQ.(V(A®.((= (P)
(Az. (AP EAQ . (3(A2°.((A(P' 2))
1)

Ay ((visit®™ (e

)(Q)))) gambler®™")
(Q' 2)))) casino®")

y)x))))

w5 (VA2 ((= (gambler®™" x))(3(Ay°.((A(casino®™" y)) ((visit™ <7 y) x)))))))

NORMALISATION

(APTTEAQ.(V(A®.((= (P)
(Az. (AP EAQ . (3(A2°.((A(P' 2))
1)

Ay ((visit®™ (e

)(Q)))) gambler®™")
(Q' 2)))) casino®")

y)x))))

w5 (VA2 ((= (gambler®™" x))(3(Ay°.((A(casino®™" y)) ((visit™ <7 y) x)))))))

= gef VT.|gambler(x) = Jy.[casino(y) A visit(x,y)]]

LAMBEK AND MONTAGUE

» Montague's strategy makes the apparent mismatch

between syntax and semantics disappear:

* Syntax and semantics are developed In parallel.

PROBLEMS AND EXTENSIONS

» Most variants and extensions of the Lambek
calculus agree on the “deep structure’’, the
(multiplicative, inturtionistic) linear logic proof used
for the computation of semantics.

» However, the “surface structure” of these logics

are rather different; different connectives,

structures, operations. ..

DE DICTO/DE RE

“lohn believes someone left”

someone left

. L L
believes (np —o s) —o s e« np —o s e«

John s —o (np —o 3) Lez S L2

Lex — F
np np —o s

—o F

DE DICTO/DE RE

“John believes someone left”

left

: L
believes [np]! np —o s &
Lex —o F
John s —o (np —o s) S
- Lex S —o F
D D o E
someone S
Lex — [
—o0 —o0 —o0
(np —o s) —o s np —o s
— F

This is not the forgetful mapping of any Lambek calculus proof!
(at least not given np\s for “left” and (np\s)/s for “believes™)

DUTCH VERB CLUSTERS

“(dat Jan) Henk Marie de nijlpaarden zag helpen voeren”

Marie helpen de nijlpaarden voeren

zag Henk np Lex np —o (an_o an) Lex np Lex np —o inf Lex
: Lex Lex . ‘ o E . B
np —o (inf —o (np —o s)) np inf —o inf inf
: — k ; —o b
an—o (’n,p —0 5) an i

np —o S

DUTCH VERB CLUSTERS

“(dat Jan) Henk Marie de nijlpaarden zag helpen voeren”

de nijlpaarden zag
np Lez np\(np\s) f;f helpen Lo
Marie Lon np\ s (np\s)\(np\(np\s)) \E
p W) | voeren
Henk np\s (np\s)\(np\(np\s)) \E
np np\(np\s) \E

np\ s

GAPPING

“John studies logic and Charles phonetics”

phonetics
: 9 Lex
logic Charles [tv] np
N ! np Lex np Lex np —o 5 —o b
szn Lex o ; —o F 1 ; — F
-0 an
—o0 —o /
S / E X —o (X — X) Lez tv —o s ;
—0 11 —0
studies tv —o s X — X
Lex —o F
tv v —o s
—o F

tv = np —o np —o S
X=1tv—os

= (np—omnp-—o8) —os

VP ELLIPSIS

“John left before Mary did”

Mary
Lex 9
before np up)
Lex —o F
s —o (vp —o vp) S
[vp]! up —o vp b
v —~ b
D o1
Up —o Up did
left vp —o (vp —o vp) (vp — (vp —o vp)) —o (vp —o vp)
v Up —o Up
J(;};n Lex P np —o 3 —o
—o F

Up=Nnp — S

Lex
—o F

X TENDING
THE LAMBEK CALCULUS

» Grammar design In type-logical grammars can be
viewed as a form of “reverse engineering’ based
on a semantic structure (l.e. a linear logic proof).

* Lambek grammars have only the option of

choosing a direction for the slashes; other systems
allow discontinuous dependencies.

GOING FURTHER

» [he Lambek calculus gives a ssimple account of some

elementary facts about the syntax-semantics interface.

* However, once we want to handle more
examples, we run into problems.

» Many variants and extensions of the Lam

nave been proposed to solve these prob

complex

hek calculus

€Ims.

MODERN
TYPE-LOGICAL GRAMMARS

MODERN TYPE-LOGICAL
GRAMMARS

* We are looking for a logic which solves the problems
with the Lambek calculus, while not sacrificing simplicrty

and good logical properties.

» Many solutions have been proposed, which makes
comparisons different.

* [here is a family resemblance™ between many of the

proposed analyses, but can we make this more precise!

MULTIMODAL

A-Ae; B F[(Aoz-B)]FC[.E] LA AEB g
LAl FC (lF'o; A) - Ae; B
I'-A/;B AFB (To; B) - A
Tonra UF rra/,8 /!
I'FB AR B\;A (Bo;,T)F A
Tonra o T Byua M

Oehrle & Zhang (1989), Moortgat & Morrill (1991),
Moortgat & Oehrle (1993,1994), Hepple (1994)

MULTIMODAL

F[Al O9 (AQ O1 Ag)] - C F[AQ O9 (Al O1 Ag)] = C

MA MC
F[(Al O9 Ag) O1 Ag] |_ C F[Al O1 (AQ O9 Ag)] |_ C

boeken F np lezen - np\ginf

/E

E
wil F (np\1$)/1inf boeken oy lezen + inf \

Marie F np wil 01 (boeken o5 lezen) - np\s

E
Marie o1 (wil o7 (boeken o lezen)) F s \

Marie o1 (boeken oy (wil o1 lezen)) F s MC

For detalls, see Moortgat & Oehrle (1994), Oehrle (201 1)

DISPLACEMENT CALCULUS

[041+1+0423A]i 8 : BJ"

0: A B 71—|—Oé1—|—5—.|—042—|—’7210 ar+14+a:A B:B

Y146+ : C OF; a1 +B+as: AG B ol
5: B
a1 +1+as:CT B B:BTE ozl—l—ﬁ—:l—o@:C f
a1+ B +ay:C ar+14+ay:C1T B
[oz1—|—14.—a2:A]i
a1 +1+ag: A B:AiCiE 041+54:—a2:0

a1+ B+ ag:C B:A|C i

DISPLACEMENT CALCULUS

a:np

Mary + thinks + a + left : s
someone : (s T np) . s Mary + thinks + 1 + left : s T np
Mary + thinks + someone + left : s

+ 1
| E

Morrill, Valentin & Fadda (201 1)

HYBRID T YPE-LOGICAL
GRAMMARS

[FM:A—oB AFN:A Ie:AFM: B /
I,AF (M N):B THXe.M:A—B
I'FP:B AFQ:B\A \E w:B,FI—w+P:A\I
INAFP+Q:A ['-P:B\A
I'-P:A/B AFQ:B s F,w:B|—P+w:A/I
I'AFP+Q:A / I'-P:A/B

H LG GAPPING

Charles + y + phonetics : s

John + x + logic : s AQAPAU.(P v) + and+ (Q €) : X —0 X —o X \y.Charles + y + phonetics : tv—o s !
Ax.John + x + logic : tv —o s APXv.and 4+ Charles + phonetics : X — X — 4
studies = tv Ap.John 4+ p + logic + and + Charles + phonetics : tv —o s I

—o0

John + studies + logic + and + Charles + phonetics : s

Kubota & Levine (2012, 2020)

THE LOGIC OF SCOPE

r-c/B AFB =
F'cAFC /

'-A AFA\C z
FrceARC \

I'[(AoB)|F D
I'Ae B D

ol

T'+C/B AFB
Tenarc /

PFA AFANC
TeArc

I[(A® B)] - D
T[A® B|I D

o

=[(A @ Ax.T[z])] F D
=[C[A]| F D

B

A

(ToB)FC
rrco/5 /!

(AoD)FC
'-A\C \

'-A AFB
ToA)FAeB

I

(T@B)FC
rrcjB /!

(AeT)FC
TFA\C \

FA AFB
Te®AFAGB

I

=[T[A]] - D B

=[(A @ Mz.L[z])| F D

THE LOGIC OF SCOPE

N L
'-C/B A+ B . @a&FC/I
ToAFC / I'+-C/B
T'A AFA\C_E MoDFC\I
ToAFC \ T-A\C
['[(AoB)|FD '-A AFB

FM_EFD ok ToA)FAeB !

THE LOGIC OF SCOPE

A

T'+C/B AFB_E @@wajﬂ
TeAFC / I'+C /B

T A AFAXC_E (A@DFC\I
TeAFC \ T-A\C

['(Ae® B)| - D 'A4 AFB

TAoB|FD ¥ TeA)-FAeB °

THE LOGIC OF SCOPE

A

I'-C/B AFB (T®B)FC
roarc /P r-cjp !
A AFA\C (Ael)FC
roarc P rrane M
I'l(A®B)|+-D i LA AFB .
TAeB|FD ° TeA)FAeB °
=[(A e\l FD =[D[A]l F D B
=ITA] - D =[(A®ral[z])| - D "

Barker & Shan (2014), Barker (2019)

THE LOGIC OF SCOPE

A
£
/N =
AL
/\ A /\
A
I]
=[(A ® Az.T[z])] - D =[TIA]] - D

—1

STAl-D ° EAexel)FD "

1THE LOGIC OF SCOPE

B

28

(Ax.M)N = M|x ::= N]|

=[(A ® M\x.T[z])] F D =[T[A]] - D

=STAFD 7 EdereIE)FD "

THE LOGIC OF SCOPE

A

John o (sa@o np) ks
np © Ax.(Johno (sawo x)) - s
everyone = s //(np \\ s) Ax.(Johno (sawox))F np\\ s

B

6—1
\Vi
JIE

everyone @ A\x.(Johno (sawo x)) - s

John o (saw o everyone) = s

(A0 AT D =[T[A]| - D N
=[CA]| - D Z(Ao el F D

MODERN TYPE-LOGICAL

GRAMMARS

Logic Connectives Structure Operations
L /, o\ list —
NL /, o, \ binary tree —
Multimodal | /;, e;, \; labeled binary tree | tree rewrites
Oy U labeled 1-2 tree tree rewrites
D L + Tk, Ok, Ik
NV tuple of lists wrap
Lambda —o lambda term f reduction
Hybrid L 4+ —o lambda term (list) | B8 reduction
NL, NL + /, ©, \\ | lambda term (tree)| S reduction/expansion
LG NL + O, ®, © | free tree graph rewrites

PROOF NETS

PROOF NETS

» Optimal (redundancy-free) representation of
proofs in multiplicative linear logic (Girard [987)

»+ Adapted to the Lambek calculus (Roorda 199 1)
and to multimodal categorial grammars (Moot &

Puite 2002)

* What about other modern type-logical grammars!

PROOF NETS AND
PROOF SEARCH

* Proof search for proof nets is very easy
[, Write down formula decomposition tree
2. Match atoms (leaves) of opposite polarity

3. Check correctness of underlying structure
using graph rewriting

LINKS

N L
OiB\Q/B A®B A\@/A\C
C A/é\B C

EXAMPLE:
JOHN SAW EVERYONE

np V A
Y

EXAMPLE:
JOHN SAW EVERYONE

EXAMPLE:
JOHN SAW EVERYONE

EXAMPLE:
JOHN SAW EVERYONE

EXAMPLE:
JOHN SAW EVERYONE

CONTRACTIONS

h
\?/ [/1]
. —

CONTRACTIONS

AT

/R [oL)] \R]

Moot & Puite (2002)

CONTRACTIONS

AT e

/R] ©L] \R]

STRUCTURAL RULES:
SUGARED VERSION

e

N Y
’ €T
5 4)
P T
T N Y
2

STRUCTURAL RULES

Condition: hy must be an ancestor of ¢| by a path which
does not pass any asynchronous (par, filled) links

EXAMPLE:
JOHN SAW EVERYONE

EXAMPLE:
JOHN SAW EVERYONE

EXAMPLE:
JOHN SAW EVERYONE

EXAMPLE:
JOHN SAW EVERYONE

EXAMPLE:
JOHN SAW EVERYONE

EXAMPLE:
JOHN SAW EVERYONE

KEY PROPERTY

VWe can, without loss of generality, replace the beta
expansion rule by the following rule (a proof net
refection of the same principle of Barker 2019)

Condition: h must be an ancestor of ¢| by a path which

does not pass any asynchronous (par) links |
P 7 7 (par) skip example

EVERYONE READ THE SAME BOOK

EVERYONE READ THE SAME BOOK

EVERYONE READ THE SAME BOOK

EVERYONE READ THE SAME BOOK

H T LG: LINKS

/B\?/B A\?/A\C B_oc\?/B
C C C

[/ E] [\E] [—E]
/1] [\/] [—/]

Moot & Stevens-Guile (2019, to appear)

H [LG: EVERYONE SLEEPS

S

o

everyone np—s np sleeps np

¥ ¥

S S

Lex(everyone) = AP.(P everyone) : (np —o s) —o s

Lex(sleeps) = Ay.y + sleeps : np —o s

H [LG: EVERYONE SLEEPS

H [LG: EVERYONE SLEEPS

everyone\ .
ssssss np ; " i
o~ o | N
S . .
A
A

np—os —

everyone . \C%/
s

S

H [LG: EVERYONE SLEEPS

everyone np—os — AP .(Peveryone)

A el

S S

H LG CONTRACTIONS

Condition: ¢c; must be an ancestor of h by a path which
does not pass any asynchronous (par) links

HITLG: BETA RULE

Condition: hy must be an ancestor of ¢| by a path which
does not pass any asynchronous (par) links

H [LG: EVERYONE SLEEPS

H [LG: EVERYONE SLEEPS

H [LG: EVERYONE SLEEPS

COMPARISONS

COMPARISON

HTLG
N L

h
h
. = /AQ\
— :
| .
h |
-1 |
. 6 x /é\. ¢
PR

h,
18]
: oy
=l
hy
h1 . .
ho |
a Cl
5
_> .
[] h2
C . .
1 CQ
h1 \@
Co

COMPARISON

HTLG abstract proof structure

everyone

HTLG proof structure . \g@)/ HTLG reduced abstract proof structure
s

S

. S }\
/A\ - /A\ : o
- - everyone
(np—os)—os np —os np .\ /. np .
\ﬁ@/ C?)
s

S S

NL, proof structure NL, abstract proof structure

Partial evaluation of

redexes In the lexical A
entry; already used by - A

np \\ s

de Groote & Retore s J(np\ 5) everyone |
(1996) and Morril p/ p/

(1999) for semantics. ’

TRANSLATIONS

HTLG NL

+ link < o link

@ with premisses p; — po < (@ with premisses ps — pq
A tensor (lexicon) 777

A par with conclusions ¢; —cy < \\ par with conclusions ¢y — ¢;
777 t, /, © par links
contractions for /, \ < contractions for /, \

777 contraction for e

A par rewrite < B\ rewrite

[rewrite < [rewrite

n rewrite <> contraction for \\

Valals

contractions for t, /, ®

TRANSLATIONS

©
\9@/ The gapping analysis of
@ @/ Kubota & Levine (201 3)
| | translates into NLy as
\ﬁf/ follows.
e (v O (tv\5)) \s)/(tO (tv\ 5))
()

Y e
—

A
EE
oYy
Y Y

TRANSLATIONS

np/é\np\s np/é\‘-
n/n/é\ n/n/é\
A
(n/m)\ (mp\s) = \Q/
np np \\ $ np\@/.

S S

TRANSLATIONS

The analysis of “same/
different” from Barker &

Shan (2014) translates
into HTLG as follows

((n\n) —onp —o 5) — np —o s

AP \x.((P same) x)

TRANSLATIONS

Dutch verb clusters in NLx

dat Sthat/ssub

Jan np
Henk np
Marie np
de np/n
nyjlpaarden n
zag (np \ (np \ Ssub)) i(] \ an)
helpen. 5\ ((np \ inf) [/ (J \ inf))

voeren j \ (np \ inf)

TRANSLATIONS

Dutch verb clusters in NLx

dat Sthat/ssub

Jan np
Henk np
Marie np
de np/n
nijlpaarden n
zag (np\ (np \ Ssup)) /(5 \\ inf)
helpen. j \ ((np \ inf) /(5 \\ inf))

voeren j \ (np \ inf)

Compare: Morrill e.a. (201 1) zag inf\w (np \ (1P \ Ssup)
helpen.J \ (inf\w (np \ inf))
voeren J \ (np \ inf)

TRANSLATIONS

HTLG

CONCLUSIONS

» Despite starting with different primitives, HTLG

and NLx produce structures which are related by a

simple isomorphism for many of their key linguistic

analyses.

CONCLUSIONS

ogical grammars.

here appears to be a“common core” of
bhenomena which can be handled by most type-

» Differences around the edges: higher-order lambda

terms allow expressivity which appears to be out

of reach for the

Displacement ca
of gaps.

Displacemer

t calcu

culus can re

erto t

us: the

ne |inear order

CONCLUSION

* Single overarching proof theory for monder type-
logical grammars

* We can add different “packages’: associativity, beta
reduction, wrap

» Makes correspondence between many analyses In
different formalisms clear

U TURE WORK

mplementation of the graph based formalism In Its

full generality (using existing sraph rewrite tools)
» Beyond the multiplicative fragment?

» More precise relations between different logics and
orammars

* Formal language theory!

THANK YOU!

MARY TALKED TO JOHN ABOUT HIMSELF

o about

/L\ PPto / np PPabo ut/ np
np np\s \?/ \?/

PPabout

(np\s) T> np

tallked Mary
|
np\s /ppab ut)/ppt PPto np

((np\s) T> np) T< np

himsel
/ J olhn
(np\s) /ppabout PPabout np
(np\s) T~ \n%% \ﬁ/

np np\s

np \?/np\s \C—E/

S

MARY TALKED TO JOHN ABOUT HIMSELF

Y
DPPto/ND np

talked

\ ab?ut
((np\)/PPavout) [PPto PPto ppapout/np np
(np\s)/pPabout PPabout
np np\s

A

S

himself

(np\s) T np

J olhn

((np\s) T> np) T< np

imself
John
|
(np\s) 1> np np M clw“y
Mary
|
np np\s

MARY TALKED TO JOHN ABOUT HIMSELF

MARY TALKED TO JOHN ABOUT HIMSELF

talked to 1 about 1

\?/ J olhn

Mary
|

himself
|

talked to 1 about himself

Mary
|

J olhn

