### GRAPH REWRITING AS A UNIVERSAL PROOF THEORY FOR MODERN TYPE-LOGICAL GRAMMARS

Richard Moot (CNRS, LIRMM) MALIN/LACompLing 16-12-2021

# INTRODUCTION: LANGUAGE AND LOGIC

# LANGUAGE AND LOGIC

 Logic textbooks often start with an introduction relating the meaning of certain sentences (eg. "every natural number has a successor", "for all epsilon greater than zero there is a delta greater than zero such that...") to logical formulas.

# THE BASIC QUESTIONS

- Formal semantics Can we translate all (or, at the very least, most) of natural language into first- or higherorder logic in a way which respects the meaning?
- Type-logical grammar/categorial grammar
   How can we integrate natural language syntax and semantics in a way that such a program of formal semantics can be worked out?

every natural number has a successor
 ∀x natural\_number(x) → ∃y successor(x,y)
 every gambler visited a casino
 ∀x gambler(x) → ∃y casino(y) ∧ visit(x,y)

every natural number has a successor
 ∀x natural\_number(x) → ∃y successor(x,y)
 every gambler visited a casino
 ∀x gambler(x) → ∃y casino(y) ∧ visit(x,y)

every natural number has a successor
 ∀x natural\_number(x) → ∃y successor(x,y)
 every gambler visited a casino
 ∀x gambler(x) → ∃y casino(y) ∧ visit(x,y)

every natural number has a successor
 ∀x natural\_number(x) → ∃y successor(x,y)
 every gambler visited a <u>casino</u>
 ∀x gambler(x) → ∃y <u>casino(y)</u> ∧ visit(x,y)

every natural number has a successor
 ∀x natural\_number(x) → ∃y successor(x,y)
 every gambler visited a casino

 $\underline{\forall x}$  gambler(x)  $\underline{\rightarrow}$   $\exists y$  casino(y)  $\land$  visit(x,y)

every natural number has a successor
 ∀x natural\_number(x) → ∃y successor(x,y)
 every gambler visited <u>a</u> casino
 ∀x gambler(x) → <u>∃y</u> casino(y) ∧ visit(x,y)

- Many of the words corresponding (at least more or less) to the standard logical connectives "no", "all", "some" but also "didn't" seem to have a sort of mismatch between the natural language sentence and the corresponding formula
- How can we "fix" this mismatch?

• How can we "fix" this mismatch?





(1922-2014)

Joachim Lambek Richard Montague (|930-|97|)

## THE LAMBEK CALCULUS





### THE LAMBEK CALCULUS

$$\frac{A/B \quad B}{A} / E \qquad \frac{B \quad B \setminus A}{A} \setminus E$$

$$\frac{\frac{\text{the}}{np/n} \ Lex}{\frac{np}{2} \ \frac{np}{2} \ \frac{1}{s} \ Lex}{\frac{np}{s} \ \frac{1}{s} \ \frac{1}{s} \ Lex}{\frac{np}{s} \ \frac{1}{s} \ Lex}$$























### EVERY GAMBLER VISITED A CASINO "DEEP STRUCTURE"

$$\frac{[np]^2 \quad \frac{np \multimap (np \multimap s) \quad [np]^1}{np \multimap s} \multimap E}{\frac{s}{np \multimap s} \multimap I_1} \multimap E} \qquad \frac{n \multimap ((np \multimap s) \multimap s) \quad n}{\frac{s}{np \multimap s} \multimap I_1} \multimap E}{\frac{n \multimap ((np \multimap s) \multimap s) \quad n}{(np \multimap s) \multimap s}}{\circ E} \multimap E}$$

The Lambek calculus is the intuitionistic, multiplicative, non-commutative fragment of linear logic. If we replace ''/'' and ''\'' by ''—o'' we obtain a linear logic proof.

semantics

# SYNTACTIC TYPES TO SEMANTIC TYPES

$$np^* = e$$
$$n^* = e \to t$$
$$s^* = t$$
$$(A \multimap B)^* = A^* \to B^*$$

$$(np \multimap (np \multimap s)) * = e \rightarrow (e \rightarrow t)$$
$$(np \multimap s) \multimap s) * = (e \rightarrow t) \rightarrow t$$
$$(n \multimap (np \multimap s) \multimap s)) * = (e \rightarrow t) \rightarrow ((e \rightarrow t) \rightarrow t)$$

# SEMANTIC DERIVATION AND LAMBDA TERM

$$\frac{z_{2}^{(e\to t)\to(e\to t)\to t}}{\frac{(z_{0} z_{1})^{(e\to t)\to t}}{(z_{0} z_{1})^{(e\to t)\to t}} \to E} = \frac{\frac{[x^{e}]^{2}}{(z_{2} y)^{e\to t}} \frac{[y^{e}]^{1}}{(z_{2} y)^{e\to t}} \to E}{\frac{((z_{2} y) x)^{t}}{\lambda y.((z_{2} y) x)^{e\to t}} \to I_{1}} = \frac{z_{3}^{(e\to t)\to(e\to t)\to t}}{(z_{3} z_{4})^{(e\to t)\to t}} \to E} = \frac{z_{1}^{(e\to t)\to(e\to t)\to t}}{((z_{3} z_{4}) \lambda y.((z_{2} y) x))^{t}} \to E} = \frac{((z_{3} z_{4}) \lambda y.((z_{2} y) x))^{t}}{\lambda x.((z_{3} z_{4}) \lambda y.((z_{2} y) x))^{e\to t}} \to I_{2}} = z_{1}^{(z_{1} z_{1})(\lambda x.((z_{3} z_{4}) \lambda y.((z_{2} y) x)))^{t}}) \to E}$$

#### THE LEXICAL MEANING OF "EVERY"

 $(n \multimap (np \multimap s) \multimap s)) * = (e \to t) \to ((e \to t) \to t)$ 

 $\lambda P^{e \to t} . \lambda Q^{e \to t} . (\forall^{(e \to t) \to t} (\lambda x^e . ((\Rightarrow^{t \to (t \to t)} (P x))(Q x))))$ 

#### THE LEXICAL MEANING OF "EVERY"

$$\lambda P^{e \to t} . \lambda Q^{e \to t} . (\forall^{(e \to t) \to t} (\lambda x^e . ((\Rightarrow^{t \to (t \to t)} (P x))(Q x))))$$

$$\lambda P^{e \to t} . \lambda Q^{e \to t} . \forall x^{e} . [(P x) \Rightarrow (Q x)]$$

#### THE LEXICAL MEANING OF "EVERY"

$$\lambda P^{e \to t} . \lambda Q^{e \to t} . (\forall^{(e \to t) \to t} (\lambda x^e . ((\Rightarrow^{t \to (t \to t)} (P x))(Q x))))$$

$$\lambda P^{e \to t} . \lambda Q^{e \to t} . \forall x^{e} . [(P x) \Rightarrow (Q x)]$$

$$\lambda P^{e \to t} . \lambda Q^{e \to t} . (P \subseteq Q)$$

#### THE LEXICAL MEANING OF "A"

$$\lambda P^{e \to t} . \lambda Q^{e \to t} . (\exists^{(e \to t) \to t} (\lambda x^e . ((\wedge^{t \to (t \to t)} (P x))(Q x))))$$

$$\lambda P^{e \to t} . \lambda Q^{e \to t} . \exists x^e . [(P x) \land (Q x)]$$

$$\lambda P^{e \to t} . \lambda Q^{e \to t} . (P \cap Q) \neq \emptyset$$

## LEXICAL SUBSTITUTION

 $((z_0 z_1) (\lambda x.((z_3 z_4) \lambda y.((z_2 y) x))))$ 

$$z_{0} := \lambda P^{e \to t} . \lambda Q^{e \to t} . (\forall (\lambda x^{e} . ((\Rightarrow (P x))(Q x))))$$

$$z_{1} := gambler^{e \to t}$$

$$z_{2} := visit^{e \to (e \to t)}$$

$$z_{3} := \lambda P^{e \to t} . \lambda Q^{e \to t} . (\exists (\lambda x^{e} . ((\land (P x))(Q x))))$$

$$z_{4} := casino^{e \to t}$$

## LEXICAL SUBSTITUTION

 $\begin{aligned} &((\lambda P^{e \to t}.\lambda Q^{e \to t}.(\forall (\lambda v^{e}.((\Rightarrow (P v))(Q v)))) \ gambler^{e \to t}) \\ &(\lambda x.((\lambda P'^{e \to t}.\lambda Q'^{e \to t}.(\exists (\lambda z^{e}.((\land (P' z))(Q' z)))) \ casino^{e \to t}) \\ &\lambda y.((visit^{e \to (e \to t)} y) x)))) \end{aligned}$ 

## NORMALISATION

$$\begin{aligned} &((\lambda P^{e \to t}.\lambda Q^{e \to t}.(\forall (\lambda v^{e}.((\Rightarrow (P v))(Q v)))) \ gambler^{e \to t}) \\ &(\lambda x.((\lambda P'^{e \to t}.\lambda Q'^{e \to t}.(\exists (\lambda z^{e}.((\land (P' z))(Q' z)))) \ casino^{e \to t}) \\ &\lambda y.((visit^{e \to (e \to t)} y) x)))) \end{aligned}$$

### NORMALISATION

$$\begin{aligned} &((\lambda P^{e \to t}.\lambda Q^{e \to t}.(\forall (\lambda v^{e}.((\Rightarrow (P v))(Q v)))) \ gambler^{e \to t}) \\ &(\lambda x.((\lambda P'^{e \to t}.\lambda Q'^{e \to t}.(\exists (\lambda z^{e}.((\land (P' z))(Q' z)))) \ casino^{e \to t}) \\ &\lambda y.((visit^{e \to (e \to t)} y) x)))) \end{aligned}$$

 $\equiv_{def} \forall x. [gambler(x) \Rightarrow \exists y. [casino(y) \land visit(x, y)]]$
### LAMBEK AND MONTAGUE

- Montague's strategy makes the apparent mismatch between syntax and semantics disappear.
- Syntax and semantics are developed in parallel.

### PROBLEMS AND EXTENSIONS

- Most variants and extensions of the Lambek calculus agree on the "deep structure", the (multiplicative, intuitionistic) linear logic proof used for the computation of semantics.
- However, the "surface structure" of these logics are rather different: different connectives, structures, operations...

### DE DICTO/DE RE

"John believes someone left"



### DE DICTO/DE RE

"John believes someone left"



This is not the forgetful mapping of *any* Lambek calculus proof! (at least not given np\s for ''left'' and (np\s)/s for ''believes'')

### DUTCH VERB CLUSTERS

"(dat Jan) Henk Marie de nijlpaarden zag helpen voeren"



### DUTCH VERB CLUSTERS

"(dat Jan) Henk Marie de nijlpaarden zag helpen voeren"



#### GAPPING

"John studies logic and Charles phonetics"



$$\begin{aligned} tv &= np \multimap np \multimap s \\ X &= tv \multimap s \\ &= (np \multimap np \multimap s) \multimap s \end{aligned}$$

### **VP ELLIPSIS**

"John left before Mary did"



 $vp = np \multimap s$ 

# EXTENDING THE LAMBEK CALCULUS

- Grammar design in type-logical grammars can be viewed as a form of "reverse engineering" based on a semantic structure (i.e. a linear logic proof).
- Lambek grammars have only the option of choosing a direction for the slashes; other systems allow discontinuous dependencies.

### GOING FURTHER

- The Lambek calculus gives a simple account of some elementary facts about the syntax-semantics interface.
- However, once we want to handle more complex examples, we run into problems.
- Many variants and extensions of the Lambek calculus have been proposed to solve these problems.

### MODERN TYPE-LOGICAL GRAMMARS

## MODERN TYPE-LOGICAL GRAMMARS

- We are looking for a logic which solves the problems with the Lambek calculus, while not sacrificing simplicity and good logical properties.
- Many solutions have been proposed, which makes comparisons different.
- There is a "family resemblance" between many of the proposed analyses, but can we make this more precise?

### MULTIMODAL

$$\frac{\Delta \vdash A \bullet_{i} B \quad \Gamma[(A \circ_{i} B)] \vdash C}{\Gamma[\Delta] \vdash C} [\bullet E] \quad \frac{\Gamma \vdash A \quad \Delta \vdash B}{(\Gamma \circ_{i} \Delta) \vdash A \bullet_{i} B} [\bullet I]$$

$$\frac{\Gamma \vdash A/_{i}B \quad \Delta \vdash B}{(\Gamma \circ_{i} \Delta) \vdash A} [/E] \qquad \frac{(\Gamma \circ_{i} B) \vdash A}{\Gamma \vdash A/_{i}B} [/I]$$

$$\frac{\Gamma \vdash B \quad \Delta \vdash B \setminus_{i} A}{(\Gamma \circ_{i} \Delta) \vdash A} [\setminus E] \qquad \frac{(B \circ_{i} \Gamma) \vdash A}{\Gamma \vdash B \setminus_{i} A} [\setminus I]$$

Oehrle & Zhang (1989), Moortgat & Morrill (1991), Moortgat & Oehrle (1993,1994), Hepple (1994)

### MULTIMODAL

$$\frac{\Gamma[\Delta_1 \circ_2 (\Delta_2 \circ_1 \Delta_3)] \vdash C}{\Gamma[(\Delta_1 \circ_2 \Delta_2) \circ_1 \Delta_3] \vdash C} MA$$

 $\frac{\Gamma[\Delta_2 \circ_2 (\Delta_1 \circ_1 \Delta_3)] \vdash C}{\Gamma[\Delta_1 \circ_1 (\Delta_2 \circ_2 \Delta_3)] \vdash C} MC$ 



For details, see Moortgat & Oehrle (1994), Oehrle (2011)

### DISPLACEMENT CALCULUS

### DISPLACEMENT CALCULUS



Morrill, Valentin & Fadda (2011)

### HYBRID TYPE-LOGICAL GRAMMARS

$$\frac{\Gamma \vdash M : A \multimap B \quad \Delta \vdash N : A}{\Gamma, \Delta \vdash (M \ N) : B} \multimap E \qquad \frac{\Gamma, x : A \vdash M : B}{\Gamma \vdash \lambda x.M : A \multimap B} \multimap I$$

$$\frac{\Gamma \vdash P : B \quad \Delta \vdash Q : B \backslash A}{\Gamma, \Delta \vdash P + Q : A} \land E \qquad \frac{w : B, \Gamma \vdash w + P : A}{\Gamma \vdash P : B \backslash A} \land I$$

$$\frac{\Gamma \vdash P : A/B \quad \Delta \vdash Q : B}{\Gamma, \Delta \vdash P + Q : A} / E \qquad \frac{\Gamma, w : B \vdash P + w : A}{\Gamma \vdash P : A/B} / I$$

#### HTLG: GAPPING



#### Kubota & Levine (2012, 2020)

| $\frac{\Gamma \vdash C \ / \ B  \Delta \vdash B}{\Gamma \circ \Delta \vdash C} \ / E$                                                                                                                                                                         | $\frac{(\Gamma \circ B) \vdash C}{\Gamma \vdash C \ / \ B} \ / I$                                  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| $\frac{\Gamma \vdash A  \Delta \vdash A \setminus C}{\Gamma \circ \Delta \vdash C} \ \backslash E$                                                                                                                                                            | $\frac{(A \circ \Gamma) \vdash C}{\Gamma \vdash A \setminus C} \ \backslash I$                     |
| $\frac{\Gamma[(A \circ B)] \vdash D}{\Gamma[A \bullet B] \vdash D} \bullet E$                                                                                                                                                                                 | $\frac{\Gamma \vdash A  \Delta \vdash B}{(\Gamma \circ \Delta) \vdash A \bullet B} \bullet I$      |
| $\frac{\Gamma \vdash C /\!\!/ B  \Delta \vdash B}{\Gamma \circledcirc \Delta \vdash C} \ / E$                                                                                                                                                                 | $\frac{(\Gamma \odot B) \vdash C}{\Gamma \vdash C / B} / I$                                        |
| $\frac{\Gamma \vdash A  \Delta \vdash A \ \basel{eq:generalized_constraints} \Delta \vdash A \ \basel{eq:generalized_constraints} \ \begin{tabular}{c} \Gamma \otimes \Delta \vdash A \ \basel{eq:generalized_constraints} & \Delta \vdash C \ \end{tabular}$ | $\frac{(A \odot \Gamma) \vdash C}{\Gamma \vdash A \ \ C} \ \ \backslash I$                         |
| $\frac{\Gamma[(A \odot B)] \vdash D}{\Gamma[A \odot B] \vdash D} \bullet E$                                                                                                                                                                                   | $\frac{\Gamma \vdash A  \Delta \vdash B}{(\Gamma \odot \Delta) \vdash A \odot B} \bullet I$        |
| $\frac{\Xi[(\Delta \odot \lambda x.\Gamma[x])] \vdash D}{\Xi[\Gamma[\Delta]] \vdash D} \beta$                                                                                                                                                                 | $\frac{\Xi[\Gamma[\Delta]] \vdash D}{\Xi[(\Delta \odot \lambda x.\Gamma[x])] \vdash D} \beta^{-1}$ |

 $\frac{\Gamma \vdash C / B \quad \Delta \vdash B}{\Gamma \circ \Delta \vdash C} / E$  $\frac{\Gamma \vdash A \quad \Delta \vdash A \setminus C}{\Gamma \circ \Delta \vdash C} \setminus E$  $\frac{\Gamma[(A \circ B)] \vdash D}{\Gamma[A \bullet B] \vdash D} \bullet E$ 

 $\frac{(\Gamma \circ B) \vdash C}{\Gamma \vdash C / B} / I$  $\frac{(A \circ \Gamma) \vdash C}{\Gamma \vdash A \setminus C} \setminus I$  $\frac{\Gamma \vdash A \ \Delta \vdash B}{(\Gamma \circ \Delta) \vdash A \bullet B} \bullet I$ 

 $\frac{\Gamma \vdash C /\!\!/ B \quad \Delta \vdash B}{\Gamma \odot \Delta \vdash C} /E$   $\frac{\Gamma \vdash A \quad \Delta \vdash A \setminus C}{\Gamma \odot \Delta \vdash C} \setminus E$   $\frac{\Gamma[(A \odot B)] \vdash D}{\Gamma[A \odot B] \vdash D} \bullet E$ 

 $\frac{(\Gamma \odot B) \vdash C}{\Gamma \vdash C / B} / I$  $\frac{(A \odot \Gamma) \vdash C}{\Gamma \vdash A \setminus C} \setminus I$  $\frac{\Gamma \vdash A \land C}{(\Gamma \odot \Delta) \vdash A \odot B} \bullet I$ 

 $\frac{\Gamma \vdash C /\!\!/ B \quad \Delta \vdash B}{\Gamma \odot \Delta \vdash C} / E \qquad \qquad \frac{(\Gamma \odot B) \vdash C}{\Gamma \vdash C /\!\!/ B} / I$   $\frac{\Gamma \vdash A \quad \Delta \vdash A \setminus C}{\Gamma \odot \Delta \vdash C} \setminus E \qquad \qquad \frac{(A \odot \Gamma) \vdash C}{\Gamma \vdash A \setminus C} \setminus I$   $\frac{\Gamma[(A \odot B)] \vdash D}{\Gamma[A \odot B] \vdash D} \bullet E \qquad \qquad \frac{\Gamma \vdash A \quad \Delta \vdash B}{(\Gamma \odot \Delta) \vdash A \odot B} \bullet I$   $\frac{\Xi[(\Delta \odot \lambda x.\Gamma[x])] \vdash D}{\Xi[\Gamma[\Delta]] \vdash D} \beta \qquad \qquad \frac{\Xi[\Gamma[\Delta]] \vdash D}{\Xi[(\Delta \odot \lambda x.\Gamma[x])] \vdash D} \beta^{-1}$ 

Barker & Shan (2014), Barker (2019)



$$\frac{\Xi[(\Delta \odot \lambda x.\Gamma[x])] \vdash D}{\Xi[\Gamma[\Delta]] \vdash D} \beta$$

$$\frac{\Xi[\Gamma[\Delta]] \vdash D}{\Xi[(\Delta \odot \lambda x.\Gamma[x])] \vdash D} \beta^{-1}$$



 $(\lambda x.M)N \equiv M[x ::= N]$ 

 $\frac{\Xi[(\Delta \odot \lambda x.\Gamma[x])] \vdash D}{\Xi[\Gamma[\Delta]] \vdash D} \beta \qquad \frac{\Xi[\Gamma[\Delta]] \vdash D}{\Xi[(\Delta \odot \lambda x.\Gamma[x])] \vdash D} \beta^{-1}$ 



$$\frac{\Xi[(\Delta \odot \lambda x.\Gamma[x])] \vdash D}{\Xi[\Gamma[\Delta]] \vdash D} \beta \qquad \frac{\Xi[\Gamma[\Delta]] \vdash D}{\Xi[(\Delta \odot \lambda x.\Gamma[x])] \vdash D} \beta^{-1}$$

1

### MODERN TYPE-LOGICAL GRAMMARS

| Logic                 | Connectives                                            | Structure           | Operations                  |
|-----------------------|--------------------------------------------------------|---------------------|-----------------------------|
| $\mathbf{L}$          | $/, \bullet, \setminus$                                | list                |                             |
| $\mathbf{NL}$         | $/,\bullet,\backslash$                                 | binary tree         |                             |
| Multimodal            | $/_i,  ullet_i,  igla_i$                               | labeled binary tree | tree rewrites               |
|                       | $\Diamond_j,\Box_j$                                    | labeled 1-2 tree    | tree rewrites               |
| D                     | $\mathbf{L}+\uparrow_k,\odot_k,\downarrow_k$           |                     |                             |
|                       | $\wedge, \vee$                                         | tuple of lists      | wrap                        |
| Lambda                | —o                                                     | lambda term         | $\beta$ reduction           |
| Hybrid                | $\mathrm{L}+-\!\!\circ$                                | lambda term (list)  | $\beta$ reduction           |
| $\mathbf{NL}_\lambda$ | $\mathbf{NL} + / \hspace{-0.15cm}/, \odot, \mathbb{N}$ | lambda term (tree)  | $\beta$ reduction/expansion |
| $\mathbf{LG}$         | $\mathbf{NL}+\oslash,$ $\circledast,$ $\oslash$        | free tree           | graph rewrites              |

PROOF NETS

### PROOF NETS

- Optimal (redundancy-free) representation of proofs in multiplicative linear logic (Girard 1987)
- Adapted to the Lambek calculus (Roorda 1991) and to multimodal categorial grammars (Moot & Puite 2002)
- What about other modern type-logical grammars?

### PROOF NETS AND PROOF SEARCH

- Proof search for proof nets is very easy
  - I. Write down formula decomposition tree
  - 2. Match atoms (leaves) of opposite polarity
  - Check correctness of underlying structure using graph rewriting





### LINKS NL














### CONTRACTIONS



## CONTRACTIONS



Moot & Puite (2002)

## CONTRACTIONS



# STRUCTURAL RULES: SUGARED VERSION



## STRUCTURAL RULES



Condition:  $h_2$  must be an ancestor of  $c_1$  by a path which does not pass any asynchronous (par, filled) links













# KEY PROPERTY

We can, without loss of generality, replace the beta expansion rule by the following rule (a proof net refection of the same principle of Barker 2019)



Condition: h must be an ancestor of c<sub>1</sub> by a path which does not pass any asynchronous (par) links

skip example









#### HTLG: LINKS



Moot & Stevens-Guile (2019, to appear)



 $\begin{aligned} &Lex(everyone) = \lambda P.(P \ everyone) : (np \multimap s) \multimap s \\ &Lex(sleeps) = \lambda y.y + sleeps : np \multimap s \end{aligned}$ 







# HTLG: CONTRACTIONS



Condition: c<sub>2</sub> must be an ancestor of h by a path which does not pass any asynchronous (par) links

## HTLG: BETA RULE



Condition:  $h_2$  must be an ancestor of  $c_1$  by a path which does not pass any asynchronous (par) links







COMPARISONS

#### COMPARISON

#### NLλ

HTLG









### COMPARISON



Partial evaluation of redexes in the lexical entry; already used by de Groote & Retoré (1996) and Morrill (1999) for semantics.



| HTLG                                       |                   | $\mathrm{NL}_{\lambda}$                       |
|--------------------------------------------|-------------------|-----------------------------------------------|
| + link                                     | $\leftrightarrow$ | $\circ$ link                                  |
| (a) with premisses $p_1 - p_2$             | $\leftrightarrow$ | $\odot$ with premisses $p_2 - p_1$            |
| $\lambda$ tensor (lexicon)                 |                   | ???                                           |
| $\lambda$ par with conclusions $c_1 - c_2$ | $\leftrightarrow$ | $\mathbb{N}$ par with conclusions $c_2 - c_1$ |
| ???                                        |                   | $t, f, \odot$ par links                       |
| contractions for $/, \setminus$            | $\leftrightarrow$ | contractions for /, $\setminus$               |
| ???                                        |                   | contraction for $\bullet$                     |
| $\lambda$ par rewrite                      | $\leftrightarrow$ | $\beta^{-1}$ rewrite                          |
| $\beta$ rewrite                            | $\leftrightarrow$ | $\beta$ rewrite                               |
| $\eta$ rewrite                             | $\leftrightarrow$ | contraction for $\mathbb{N}$                  |
| ???                                        |                   | contractions for $t, \not/, \odot$            |



The gapping analysis of Kubota & Levine (2013) translates into NL<sub>λ</sub> as follows.

 $((tv \odot (tv \, \mathbb{N}\, s)) \, \backslash \, s) / (t \odot (tv \, \mathbb{N}\, s))$ 





The analysis of "same/ different" from Barker & Shan (2014) translates into HTLG as follows

$$((n \setminus n) \multimap np \multimap s) \multimap np \multimap s$$
$$\lambda P.\lambda x.((P same) x)$$

Dutch verb clusters in  $NL_{\lambda}$ 

 $\begin{array}{rrrr} dat & s_{that} / s_{sub} \\ Jan & np \\ Henk & np \\ Marie & np \\ de & np / n \\ nijlpaarden & n \\ & zag & (np \setminus (np \setminus s_{sub})) f/(j \setminus inf) \\ helpen & j \setminus ((np \setminus inf) f/(j \setminus inf)) \\ voeren & j \setminus (np \setminus inf) \end{array}$ 

Dutch verb clusters in  $NL_{\lambda}$ 

 $\begin{array}{rll} dat & s_{that} / s_{sub} \\ Jan & np \\ Henk & np \\ Marie & np \\ de & np / n \\ nijlpaarden & n \\ zag & (np \setminus (np \setminus s_{sub})) f/(j \setminus inf) \\ helpen & j \setminus ((np \setminus inf) f/(j \setminus inf)) \\ voeren & j \setminus (np \setminus inf) \end{array}$ 

Compare: Morrill e.a. (2011)

 $\begin{array}{ll} zag & inf \setminus_w (np \setminus (np \setminus s_{sub}) \\ helpen & J \setminus (inf \setminus_w (np \setminus inf)) \\ voeren & J \setminus (np \setminus inf) \end{array}$ 


### CONCLUSIONS

 Despite starting with different primitives, HTLG and NL<sub>λ</sub> produce structures which are related by a simple isomorphism for many of their key linguistic analyses.

# CONCLUSIONS

- There appears to be a "common core" of phenomena which can be handled by most typelogical grammars.
- Differences around the edges: higher-order lambda terms allow expressivity which appears to be out of reach for the Displacement calculus; the Displacement calculus can refer to the linear order of gaps.

# CONCLUSION

- Single overarching proof theory for monder typelogical grammars
- We can add different ''packages'': associativity, beta reduction, wrap
- Makes correspondence between many analyses in different formalisms clear

# FUTURE WORK

- Implementation of the graph based formalism in its full generality (using existing graph rewrite tools)
- Beyond the multiplicative fragment?
- More precise relations between different logics and grammars
- Formal language theory?

THANK YOU!









