Some Remarks on Logic and Topology
 Richard Moot
 Richard.Moot@labri.fr

Reminder Basic Definitions

- A topology is a set X (the universe) and a collection τ of subsets of X (the open sets) such that:
- 七 contains X and \varnothing
- The union of any collection of elements of τ is in τ
- The intersection of any finite number of elements of τ is in τ

Reminder Basic Definitions

- The complement of a subset A of X, which we will note by A^{\prime} is defined as X \backslash A.
- The complement of an open s€ closed.

Reminder Basic Definitions

- A set can be both closed and oper (specifically, both X and \varnothing are bo closed and open in any topology)
- a set can also be neither closed nor open.

Reminder

(Very) Basic Properties

- $(A \cup B)^{\prime}=A^{\prime} \cap B^{\prime}$
- $X \backslash(A \cup B)=X \backslash A \cap X \backslash B$
- $\forall x X \in X \wedge x \notin(A \cup B) \leftrightarrow$ $x \in X \wedge X \notin A \wedge X \notin B$

Reminder

(Very) Basic Properties

- $(A \cup B)^{\prime}=A^{\prime} \cap B^{\prime}$
- $X \backslash(A \cup B)=X \backslash A \cap X \backslash B$
- $\forall x X \in X \wedge \neg(x \in(A \cup B)) \leftrightarrow$ $x \in X \wedge X \notin A \wedge X \notin B$

Reminder

(Very) Basic Properties

- $(\mathrm{A} \cup \mathrm{B})^{\prime}=\mathrm{A}^{\prime} \cap \mathrm{B}^{\prime}$
- $X \backslash(A \cup B)=X \backslash A \cap X \backslash B$
- $\forall \mathrm{xx} \in \mathrm{X} \wedge \neg(\mathrm{x} \in \mathrm{A} \vee \mathrm{x} \in \mathrm{B})) \leftrightarrow$ $x \in X \wedge X \notin A \wedge X \notin B$

Reminder

(Very) Basic Properties

- $(A \cup B)^{\prime}=A^{\prime} \cap B^{\prime}$
- $X \backslash(A \cup B)=X \backslash A \cap X \backslash B$
- $\forall x X \in X \wedge \neg(x \in A) \wedge \neg(x \in B)) \leftrightarrow$ $x \in X \wedge X \notin A \wedge X \notin B$

Reminder

(Very) Basic Properties

- $(\mathrm{A} \cap \mathrm{B})^{\prime}=\mathrm{A}^{\prime} \cup \mathrm{B}^{\prime}$
- $X \backslash(A \cap B)=X \backslash A \cup X \backslash B$
- $\forall x X \in X \wedge X \notin(A \cap B) \leftrightarrow$ $x \in X \wedge(x \notin A \vee x \notin B)$

Reminder Basic Definitions

- Given a set A, the interior A° of A is the union of all open sets O such that 0 $\subseteq A$.
- Given a set A , the closure A^{-}of A is the intersection of all closed sets C such that $A \subseteq C$.
- Evidently, we have $\mathrm{A}^{\circ} \subseteq \mathrm{A} \subseteq \mathrm{A}^{-}$

Reminder Basic Definitions

- Evidently, we have $\mathrm{A}^{\circ} \subseteq \mathrm{A} \subseteq \mathrm{A}^{-}$
- The boundary of $\mathrm{A}, \delta \mathrm{A}$ is defined as A^{-} $\backslash A^{0}$

Reminder Đxample 1

$$
\begin{aligned}
& X=\{a, b, c, d, e\} \\
& \tau=\{\varnothing, X,\{a\},\{c, d\},\{a, c, d\},\{b, c, d, e\}\} \\
& \tau^{\prime}=\{\varnothing, X,\{b, c, d, e\},\{a, b, e\},\{b, e\},\{a\}\}
\end{aligned}
$$

$$
A=\{a, b\}
$$

$$
A^{0}=\{a\} \cup \varnothing=\{a\}
$$

$$
A^{-}=X \cap\{a, b, e\}=\{a, b, e\}
$$

$$
\delta \mathrm{A}=\{\mathrm{a}, \mathrm{~b}, \mathrm{e}\} \backslash\{\mathrm{a}\}=\{\mathrm{b}, \mathrm{e}\}
$$

Reminder Example 2

$$
\begin{aligned}
& \mathrm{X}=\{\mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d}, \mathrm{e}\} \\
& \tau=\{\varnothing, \mathrm{X},\{\mathrm{a}\},\{\mathrm{c}, \mathrm{~d}\},\{\mathrm{a}, \mathrm{c}, \mathrm{~d}\},\{\mathrm{b}, \mathrm{c}, \mathrm{~d}, \mathrm{e}\}\} \\
& \tau^{\prime}=\{\varnothing, \mathrm{X},\{\mathrm{~b}, \mathrm{c}, \mathrm{~d}, \mathrm{e}\},\{\mathrm{a}, \mathrm{~b}, \mathrm{e}\},\{\mathrm{b}, \mathrm{e}\},\{\mathrm{a}\}\}
\end{aligned}
$$

$$
A=\{c, d\}
$$

$$
A^{0}=\{c, d\} \cup \varnothing=\{c, d\}
$$

$$
\mathrm{A}^{-}=\mathrm{X} \cap\{\mathrm{~b}, \mathrm{c}, \mathrm{~d}, \mathrm{e}\}=\{\mathrm{b}, \mathrm{c}, \mathrm{~d}, \mathrm{e}\}
$$

$$
\delta \mathrm{A}=\{\mathrm{b}, \mathrm{c}, \mathrm{~d}, \mathrm{e}\} \backslash\{\mathrm{c}, \mathrm{~d}\}=\{\mathrm{b}, \mathrm{c}\}
$$

Reminder Example 1

$$
\begin{aligned}
X & =\langle 0,0\rangle-<5,5\rangle \\
\tau & =\{\varnothing,<0,5>,<,\{b, c, d\}\}
\end{aligned}
$$

Reminder Example 1

- Approximating a circle using rectangles (fortunately we have infinite unions)

Reminder Example 1

- Approximating a circle using rectangles (fortunately we have infinite unions)

Reminder Example 1

- Approximating a circle using rectangles (fortunately we have infinite unions)

Reminder Example 1

- Approximating a circle using rectangles (fortunately we have infinite unions)

Regular Closed Sets

Regular closed

Not reg. closed

- A is regular closed iff $A=A^{0^{-}}$
- roughly speaking, this means no "loose points" and no "hanging lines"

Regular Closed Sets

A

Not reg. closed

B

- A is regular closed iff $A=A^{-}$
- roughly speaking, this means no "loose points" and no "hanging lines"

Regular Closed Sets

Ao

Not reg. closed

- A is regular closed iff $\mathrm{A}=\mathrm{A}^{0-}$
- roughly speaking, this means no "loose points" and no "hanging lines"

Regular Closed Sets

A^{o}
=A

Not reg. closed

B^{--}
$\neq \mathrm{B}$

- A is regular closed iff $A=A^{0-}$
- roughly speaking, this means no "loose points" and no "hanging lines"

Regular Open Sets

Regular open

A

Not reg. open

- A is regular open iff $\mathrm{A}=\mathrm{A}^{-0}$
- roughly speaking, this means no "holes" and no "cracks"

Regular Open Sets

Regular open

A^{-}

Not reg. open

B^{-}

- A is regular open iff $\mathrm{A}=\mathrm{A}^{-0}$
- roughly speaking, this means no "holes" and no "cracks"

Regular Open Sets

Regular open
A^{-0}
=A

Not reg. open

- A is regular open iff $A=A^{-0}$
- roughly speaking, this means no "holes" and no "cracks"

Regular Sets

- Suppose A is a regular open set, that is $A=A^{-0}$.
- Thus we have, for its complement A^{\prime} that $\mathrm{A}^{\prime}=\mathrm{A}^{-\mathrm{o}^{\prime}}=\mathrm{A}^{-\prime-}=\mathrm{A}^{\prime} \mathrm{o}^{-}$
- In addition, we have $\mathrm{A}^{-}=\mathrm{A}^{-0-}$
- In other words, both A' and A regular closed.

Combinations

- Given a region variable A, how many (potentially) different regions can we construct using the closure, interior and complement relations?
- Our possibilities are limited by the fact that a double complement is the identity function and that the closure and interior operations are idempotent.

Combinations

- Equivalences
- $A^{\prime \prime}=A$
- $A^{00}=A^{0}$
- $\mathrm{A}^{--}=\mathrm{A}^{-}$
- $A^{0-0-}=A^{0-}$
- $A^{-0-0}=A^{-0}$
- Non-equivalent
- A
- A^{-}, A^{0}
- A^{-0}, A^{0-}
- $\mathrm{A}^{-0-}, \mathrm{A}^{0-0}$
- and their negations

Combinations

Combinations

Combinations

0 : interior

- : closure
' : complement

Combinations

Combinations

Combinations

Regular closed regions

- A regular closed $=$ def $A=A^{-}$
- - : closure
- o : interior
- ' : complement

Regular open regions

- A regular open $=$ def $\mathrm{A}=\mathrm{A}^{-0}$
- - : closure
- o : interior
- ' : complement

Intersection

- A is the union of the closed rectangles [0,0]-[1-2] and [0-1][1-2]
- B is the union of the closed rectangles [0-0]-[l-1] and [0-1]-[2-2]

Intersection

- A is the union of the closed rectangles [0,0]-[1-2] and [0-1][1-2]
- B is the union of the closed rectangles
[0-0]-[l-1] and [0-1]-[2-2]

Intersection

$A \cap B$

- The intersection of two regular closed sets (though closed) is not necessarily regular closed.
- Therefore we define the intersection of two regular closed sets as (A $\cap B)^{0-}$

Intersection

$A \cap B^{\circ}$

- The intersection of two regular closed sets (though closed) is not necessarily regular closed.
- Therefore we define the intersection of two regular closed sets as $(A \cap B)^{0^{-}}$

Intersection

$A \cap B^{0-}$

- The intersection of two regular closed sets (though closed) is not necessarily regular closed.
- Therefore we define the intersection of two regular closed sets as (A $\cap B)^{0-}$

Union

$A \cup B$

- Likewise, the union of two regular open sets (though open) is not necessarily regular open.
- Therefore we define the union of two regular open sets as $(A \cup B)^{-0}$

$\mathrm{A} \cup \mathrm{B}=\langle 0,0\rangle-<1,2\rangle \cup$
 <1,0>-<2,2>>

Union

$(A \cup B)^{-}$

- Likewise, the union of two regular open sets (though open) is not necessarily regular open.
- Therefore we define the union of two regular open sets as $(A \cup B)^{-0}$

Union

$(A \cup B)^{-0}$

- Likewise, the union of two regular open sets (though open) is not necessarily regular open.
- Therefore we define the union of two regular open sets as $(A \cup B)^{-0}$

Boolean Algebra

- $(A \wedge B) \wedge C=A \wedge(B \wedge C)$
- $(A \vee B) \vee C=A \vee(B \vee C)$
- $\mathrm{A} \wedge \mathrm{B}=\mathrm{B} \wedge \mathrm{A}$
- $\mathrm{A} \vee \mathrm{B}=\mathrm{B} \vee \mathrm{A}$
- $\operatorname{A} \vee(\mathrm{A} \wedge \mathrm{B})=\mathrm{A}$
- $A \wedge(A \vee B)=A$
- $\mathrm{A} \vee(\mathrm{B} \wedge C)=$ $(A \vee B) \wedge(A \vee C)$
- $\mathrm{A} \wedge(\mathrm{B} \vee C)=$ $(A \wedge B) \vee(A \wedge C)$
- $\operatorname{Av} \neg \mathrm{A}=\mathrm{T}$
- $\mathrm{A} \wedge \neg \mathrm{A}=\perp$

Boolean Algebra

- $(A \wedge B) \wedge C=A \wedge(B \wedge C)$
- $(A \vee B) \vee C=A \vee(B \vee C)$
- $\mathrm{A} \wedge \mathrm{B}=\mathrm{B} \wedge \mathrm{A}$
- $\mathrm{A} \vee \mathrm{B}=\mathrm{B} \vee \mathrm{A}$
- $\operatorname{A} \vee(\mathrm{A} \wedge \mathrm{B})=\mathrm{A}$
- $A \wedge(A \vee B)=A$
- $\mathrm{A} \vee(\mathrm{B} \wedge C)=$ $(A \vee B) \wedge(A \vee C)$
- $\mathrm{A} \wedge(\mathrm{B} \vee C)=$ $(A \wedge B) \vee(A \wedge C)$
- $\operatorname{Av} \neg \mathrm{A}=\mathrm{T}$
- $\mathrm{A} \wedge \neg \mathrm{A}=\perp$

Boolean algebras

Regular Open Sets

- [T] = X
- $\lfloor\perp]=\varnothing$
- $\lfloor\mathrm{p}\rfloor=\mathrm{p}$
- $\lfloor\neg \mathrm{A}]=\mathrm{X} \backslash[\mathrm{A}]^{-}$
- $\lfloor\mathrm{A} \wedge \mathrm{B}]=\lfloor\mathrm{A}\rfloor \cap[\mathrm{B}\rfloor$
- $\lfloor\mathrm{A} \vee \mathrm{B}]=(\lfloor\mathrm{A}\rfloor \cup[\mathrm{B}\rfloor)^{-0}$

Regular
This is very classic. It is basically the (even more prototypical) superset algebra with a slight tweak to the complement and union relations (complement and union for the regular closed sets) to make sure the resulting set is a regular open set (resp. a regular closed set)

- $[\mathrm{T}]=\mathrm{X}$
- $\lceil\perp\rceil=\varnothing$
- $\lceil\mathrm{p}\rceil=\mathrm{p}$
- $\lceil\neg \mathrm{A}\rceil=\mathrm{X} \backslash\lceil\mathrm{A}\rceil^{0}$
- $[\mathrm{A} \wedge \mathrm{B}]=([\mathrm{A}] \cap[\mathrm{B}])^{0^{-}}$
- $\lceil\mathrm{AvB}\rceil=\lceil\mathrm{A}\rceil \cup\lceil\mathrm{B}\rceil$

Kuratowski Axioms

Closure

S4

- $\mathrm{A} \leq \mathrm{A}^{-}$
- $\mathrm{A}^{--}=\mathrm{A}^{-}$
- $\perp^{-}=\perp$
- $(A \cup B)^{-}=A^{-} \cup B^{-}$
- $\mathrm{A} \Leftrightarrow \mathrm{A}$
- $\vee>A \forall A$
- $\diamond \perp \vdash \perp$
- $\diamond(\mathrm{A} \vee \mathrm{B}) \vdash \diamond \mathrm{A} \vee \mathrm{B}$
- $\diamond \mathrm{A} \diamond \mathrm{B} \vdash \diamond(\mathrm{A} \vee \mathrm{B})$

Kuratowski Axioms

Interior

- $A^{0} \leq A$
- $\mathrm{A}^{0}=\mathrm{A}^{00}$
- $\mathrm{T}=\mathrm{T}^{0}$
- $A^{0} \cap B^{0}=(A \cap B)^{0}$
- $\triangle \triangle B \vdash \triangle(A \wedge B)$
- $\triangle(A \wedge B) \vdash \triangle A \bigwedge B$

Kuratowski Axioms

Interior

S4

- $\mathrm{A}^{0} \leq \mathrm{A}$
- $A^{0}=A^{00}$
- $T=T^{0}$
- $\mathrm{A}^{0} \cap \mathrm{~B}^{0}=(\mathrm{A} \cap \mathrm{B})^{0}$
- ! $\mathrm{A} \wedge!\mathrm{B} \vdash!(\mathrm{A} \wedge \mathrm{B})$
- ! $(\mathrm{A} \wedge \mathrm{B}) \vdash!\mathrm{A} \wedge$! B

Closure/Interior algebras

Interior Algebra

- $\mathrm{A}^{0} \leq \mathrm{A}$
- $A^{00}=A^{0}$
- $\mathrm{T}^{\mathrm{O}}=\mathrm{T}$
- $(\mathrm{A} \cap \mathrm{B})^{0}=\mathrm{A}^{0} \cap \mathrm{~B}^{0}$

Closure Algebra

- $\mathrm{A} \leq \mathrm{A}^{-}$
- $\mathrm{A}^{--}=\mathrm{A}^{-}$
- $\perp^{-}=\perp$
- $(A \cup B)^{-}=A^{-} \cup B^{-}$

Modeling

- Let's turn to some possible applications.
- How would we model a statement like "the interior of region A and the interior of region B have a non-empty intersection"?
- First try: $\neg \triangle \mathbb{A} \mathbb{\triangle} B \leftrightarrow \perp)$

Modeling

- First try: $\neg \triangle A \mathbb{A} \leftrightarrow \leftrightarrow \perp)$
- This formula is equivalent to $\triangle A \nsubseteq B$
- Let's construct a model of this formula.

A model of $\mathrm{A}^{\circ} \wedge \mathrm{B}^{\circ}$

Reminder: A-means there is an arrow to a state where A holds. Ao means all arrows lead to a state where A holds.

Remark: none of

This is no seems very simple always construct a model with depth 1 and at most two arrows leaving any point.

sared
\{ $\mathrm{A}^{\prime}, \mathrm{B}$

$$
\begin{gathered}
1 \\
\left\{\mathrm{~A}^{\mathrm{o}}, \mathrm{~A}\right\}
\end{gathered}
$$

Question: can we add arrow from 1 to 2 ? Answer: No! If we add an arrow from 1 to 2, transitivity would force us to add an arrow from 1 to 7 as well and then A would no longer hold at all states accessible from 1.

$\left\{A^{\circ}, A, B^{\circ}, B\right\}$

$\left\{\mathrm{B}^{\circ}, \mathrm{B}\right\}$

A model of $A^{0} \wedge B^{\circ}$

Now, in order for the formula $\mathrm{A}^{\circ} \wedge \mathrm{B}^{\circ}$ to hold, it has to be true at every point.

This means that for every point and every point we can reach from this point by following an arrow both A and B must hold.

Let's look at

1	5	3
$\left\{A^{\circ}, A\right\}$	$\left\{A^{\circ}, A, B^{\circ}, B\right\}$	$\left\{B^{\circ}, B\right\}$

A model of $\mathrm{A}^{0} \wedge \mathrm{~B}^{\circ}$

The only point we can reach from point γ is point 7 itself.

Neither A nor B holds at point 7 .

Therefore, this model is a countermodel to $\mathrm{A}^{\circ} \wedge \mathrm{B}^{\circ}$

A model of $\mathrm{A}^{0} \wedge \mathrm{~B}^{\circ}$

We want to state that $A^{\circ} \wedge B^{\circ}$ is true at at least one point in the model.

This would
$\left\{\mathrm{A}^{\prime}, \mathrm{B}^{\prime}\right\}$
correctly model the fact that this intersection is not empty

However, in standard S4 we cannot express this.

A model of $A^{\circ} \wedge B^{\circ}$

A solution is to add a universal modality to S4, giving the system $\mathrm{S} 4_{u}$

A formula $\forall \mathrm{F}$ is true if for all points in the model the formula F is true.

	䢒

A formula $\exists \mathrm{F}$ is true is F holds at at least one point.

$$
\begin{array}{cc}
\hline 1 & 5 \\
\left\{\mathrm{~A}^{0}, \mathrm{~A}\right\} & \left\{\mathrm{A}^{0}, \mathrm{~A}, \mathrm{~B}^{0}, \mathrm{~B}\right\}
\end{array}
$$

One way to see the system S 4 u is
that it is a multimodal system with one S4 modality (with a transitive and reflexive accessibility relation) and a second modality which has all worlds.

$$
\begin{array}{cc}
\left\{\mathrm{A}^{-}, \mathrm{A}, \mathrm{~A}^{\prime-}\right\} \quad & \begin{array}{l}
\\
\\
\\
\mathrm{B}^{-}, \mathrm{A}, \mathrm{~A}^{-}, \mathrm{A}^{\prime-}, \\
\left.\mathrm{B}^{-}\right\}
\end{array}
\end{array}
$$

1	5	3
$\left\{\mathrm{~A}^{\circ}, \mathrm{A}\right\}$	$\left\{\mathrm{A}^{\circ}, \mathrm{A}, \mathrm{B}^{\circ}, \mathrm{B}\right\}$	$\left\{\mathrm{B}^{\circ}, \mathrm{B}\right\}$

S4u

- In other words, $\forall \mathrm{F}$ will mean $|\mathrm{F}|=\mathrm{X}$ and $\exists \mathrm{F}$ will mean $|\mathrm{F}| \neq \varnothing$
- The negated forms are interpreted as expected: $\neg \forall F$ will mean $|F| \neq X$ and $\neg \exists \mathrm{F}$ will mean $|\mathrm{F}|=\varnothing$
- In the following, I will often use formulas containing " $F \neq \varnothing$ ", " $F=$ "F = \varnothing ", " $F=X$ ".

S4u expressivity

- Define $\mathrm{A} \subseteq \mathrm{B}$ as $\forall(\neg A \vee B)$ or $\neg A \vee B=X$ or $\mathrm{A} \rightarrow \mathrm{B}=\mathrm{X}$
- Define $\mathrm{A} \nsubseteq \mathrm{B}$ as
$\neg \forall(\neg A \vee B)$ or
$\neg A \vee B \neq X$ or
$A \rightarrow B \neq X$
- Define $\mathrm{A} \subset \mathrm{B}$ as $\mathrm{A} \subseteq \mathrm{B} \wedge \mathrm{B} \nsubseteq \mathrm{A}$

S4u expressivity

S4u expressivity

The interiors share a point but
neither $\mathrm{A}->\mathrm{B}$ not $\mathrm{B}->\mathrm{A}$

A B

- Define PO(A,B) as $\exists\left(A^{0} \wedge B^{0}\right) \wedge$ $\neg(A \subseteq B) \wedge \neg(B$
\square $\subseteq A)$ or $A^{0} \wedge B^{0} \neq$ $\varnothing \wedge \neg(A \subseteq B) \wedge$ $\neg(B \subseteq A)$

Many authors use the first version (interiors intersected with negations), some others use the second version. Look at the differences and try to find if these are important. The first version intersects only closed sets, whereas the second intersects and open and a closed set, which seems to be an advantage.

Define $\mathrm{FQ}(\mathrm{A}, \mathrm{B})$ as $A \subseteq B \wedge B \subseteq$ A.

$$
A \subseteq B \wedge B \subseteq A
$$

S4u expressivity

S4u expressivity

- Define NTPP^{-1} (A,B) as $\operatorname{NTPP}(\mathrm{B}, \mathrm{A})$
- Define $\operatorname{TPP}{ }^{-1}(\mathrm{~A}, \mathrm{~B}) \mathrm{as}$ $\operatorname{TPP}(\mathrm{B}, \mathrm{A})$

$$
\begin{array}{cc}
\neg \mathrm{B} \vee \mathrm{~A}=\mathrm{X} \wedge \neg \mathrm{~B} \wedge \mathrm{~A} \neq \varnothing \wedge \mathrm{B} \wedge \neg\left(\mathrm{~A}^{0}\right) \neq \varnothing & \mathrm{A} \\
\mathrm{~B} \subset \mathrm{~A} \wedge \mathrm{~B} \nsubseteq \mathrm{~A}^{\circ} & \mathrm{B}
\end{array}
$$

S4u expressivity

- We have shown that there are formulas defining the RCC8 relations in S4u
- A natural question is: are there any useful things we can express in S4u which are not expressible in RCC8
- Since the RCC8 relations apply only to region variables, it seems natural to consider complex formulas built from region variables.

S4u expressivity

- Since the RCC8 relations apply only to region variables, it seems natural to consider complex formulas built from region variables.
- The resulting calculus is sometimes called BRCC8.

S4u expressivity

- ÆQ(Union玉uropéene, PaysBaysvBelgiquevFrancev...)
- EQ(Aquitaine,

Dordogne v Gironde v Landes v
Lot®tGaronne v PyrénéesAtlantiques)

- TPP(Pyrénées, Francev \#spagneva
- EC(France^Pyrénées,Espagne^Pyr

S4u expressivity

- EC(Andorre,France^Pyrénées)
- ¥C(Andorre,Æspagne^Pyrénées)
- NTPP(Andorre,Pyrénées)
- EQ(France, FranceContinentalvCorse)
- DC(FranceContinental,Corse)

S4u expressivity

- TPP(Pyrénées, FrancevEspagnevAndorre)
- ¥C(France^Pyrénées,झspagne^Pyrénées)

- DC(France^ᄀPyrénées, BSpagne^ন connected by means of the Pyrénées. This a stronger than the RCC8 statements PO(France,Pyrénées) PO(Espagne,Pyrénées) EC(France,
Espagne)
- EC(Andorre,France^Pyrénées)
- ¥C(Andorre,¥spagne^Pyrénées)
- NTPP(Andorre,Pyrénées)

