Extending lambda grammars

Richard Moot (CNRS, LaBRI/LIRMM)

New Landscapes In Theoretical Computational Linguistics, 16-10-2016, Columbus, Ohio

Overview

* Lambek grammars
* Lambda grammars
* Lambda grammars as a fragment of first-order linear logic

+ Problems and extensions

The LLambek calculus

The L.ambek calculus

* Alogical calculus for natural language syntax and semantics
introduced in (Lambek 1958)

* Two connectives:
 A/B (A over B)
e B\ A (B under A)

* The Curry-Howard isomorphism allows us to combine the Lambek
calculus with natural language semantics in the tradition of
Montague.

The L.ambek calculus

[.amitations of the
l.ambek calculus

* Though the Lambek calculus handles the basics of Montague
grammar, it has problems with non-peripheral wide scope.

* Lambek grammars generate only context-free languages; some
natural languages demonstrate non-context-free phenomena like
copying and multiple/crossed dependencies.

+ To deal with these problems, a large number of extensions to the
Lambek calculus has been proposed.

Medial extraction

* It is often claimed that the Lambek calculus cannot handle medial
extraction, eg. that phrases like the following are underivable.

1. contracts which John filed yesterday

* What do we mean exactly when we make claims like this?

Semantic types

filed
. e e
e lLezx e —>t 5
which e / e
) (e 1) et e El
(e >t) > e—t =
L
ny. =¢
n* =e—t
(A — B)* =

Deep structure

filed
Lex
John np —o (np —° s) [npls
np Lez np —o s
which - — K
Lex t o
(np — s) —o (n —o n) np —o s
n —on .
L
ny. =¢
n* =e—t
Ao Bii=— A > B

LLambek calculus pseudo-proof

filed b
o (np\s)/np " [npls 5
o np Lex np\s \E
whic i S o
(n\n)/(np —o s) T

n\n

Medial extraction in L (solution 1)

contracts n
which (n
which (

John np

filed (np\s)/np

filed np\ sy,
yesterday (np\s)\(np\s)
yesterday (np\Snp)\(NP\Snp)

Medial extraction in L (solution 1)

=P filed np\Ssnp
yesterday (np\s)\(np\s)
=P yesterday (np\snp)\(nP\Snp)

Medial extraction in L (solution 1)

=P contracts mn
=P which (n\n)/sn,
which (n\n)/(np\s)
=P John np
filed (np\s)/np
=P filed np\Sy,
without ((np\s)\(np\s))/(np\sing)
= 101N 0UL ((np\snp)\(np\snp))/(np\smgnp)
reading np\sing/np
=P reading np\sing,,

Medial extraction in L. (solution 2

+ Emms proposes the second-order formula YX. ((n\n)/(X\s))/(X/np)
for extraction.

+ We can select a suitable finite set of instantiations of this type to at
least approximate medial extraction

Iwo forms of inadequacy

+ Shieber (1988) distinguishes between the absolute

expressiveness and the functional expressiveness of formal
systems

+ the Lambek calculus cannot handle extraction in terms
of functional expressiveness

* the Lambek calculus cannot handle Montague-style
quantifier scope in terms of absolute expressiveness (by
a simple counting argument)

Descriptive adequacy

+ Claims that the Lambek calculus cannot handle medial extraction
presuppose both type-logical deep structure and a descriptive
adequacy criterion (that is, avoiding lexical duplication).

* Solution 1 does not generalise very well to multiple extraction,
multiple medial quantification (which can only be approximated),

gapping, etc.

+ If we allow duplication of lexical entries and atomic formulas, then it
becomes very hard to falsify any type-logical grammar (even
impossible if we allow approximation).

Extensions and variants of the
L.ambek calculus

Common core architecture of
type-logical grammars

multiplica- | _ linear
]] iIsomorphism
tive linear |« = lambda
logic proof term
lexical
homomorphis subsitution,
normalization
categorial logical
grammar semantics
proof (formulas)
lexical i theorem
subsitution, proving
arsin .
par>ne semantics
Input text and

pragmatics

The LLambek calculus

and 1ts extensions

CCG

AG
Arid
AB L

D

The LLambek calculus

and 1ts extensions

 m

The LLambek calculus

and 1ts extensions

Moot & Puite (2002), Moot
(2007),Moot & Retoré (2012),
Moortgat & Moot (2013)

Proof nets as
graph rewriting

~ Interaction nets

The LLambek calculus

and 1ts extensions

The LLambek calculus

and 1ts extensions

Muluplicative first-order
linear logic

Parsing using string position pairs

Jim proved the theorem

np (np\s)/np np/n n

Parsing using string position pairs

Jim proved the theorem

np (np\s)/np np/n n

Vx.n(3,x)—np(2,x) n(3,4)

Parsing using string position pairs

0 1 2 5,
Jim proved the theorem
np (np\s)/np np/n n
YxnBx)-np2x) n(34)

np(2,4)

Parsing using string position pairs

0 1 2 5,
Jim proved the theorem
np (np\s)/np np/n n
YxnBx)-np2x) n(34)

Vznp(2,z)-Vynp(y1)—s(y,z) np(2,4)

Parsing using string position pairs

0 1 2 5,
Jim proved the theorem
np (np\s)/np np/n n
YxnBx)-np2x) n(34)
Yz.0p(2,2)~Yynp(y,1)~s(y,2) np(2,4)

np(0,1) Vynp(y,1)—-s(y4)

Parsing using string position pairs

0 1 2 5,
Jim proved the theorem
np (np\s)/np np/n n
Vx.n(3,x)—np(2,x) n(3,4)
Vznp(2,z)-Vynp(y1)—s(y,z) np(2,4)
np(0,1) Vynp(y,1)-s(y,4)

s(0,4)

l.ambek calculus and MIIL.I.1

D

e)

|A/B (€ises) — /oy BH(ej,xk,)_O”A|
| B\ A (eirei) — Vo, B|‘<x’“’ei>—o||A||<xk7€j>
||A o Bl {€ies) — =l A‘ (e o) X ||B||(:ck,ej)

(€i,Tk)

See Moot & Piazza (2001) for the
correctness of this translation

MII.1.T natural deduction

[1‘:1]i
e i B
[14:1]7;
ﬂx.AC ¢ 25 A[;Ca;z] o
ged Ao

MILL1T proof structures: links

|
— + — +
A A A A
| |
+ - - + - - -
A B A 5 A B A
- o - ;
A—B A= A®B A®B
- - +

5
B
I
s
0
)
I

. o
Vr.A Vr.A dr. A dx. A

MILL1T proof nets: switchings

A

B A B
C &

MILL1T proof nets: switchings

A B

B A
C &

MILL1T proof nets: switchings

replace dotted link by solid link:
boring (necessary only for
“vacuous” quantification (no
occurrences of x in A)

Vx.A Vx.A

Interesting case: connect to formula
with free occurrence of x

In addition, a switching can connect the
conclusion of the link to any formula containing a
free occurrence of the variable x

MILLT proof nets

Theorem (Girard 1991)
A first-order multiplicative proof structure is a proof net

iff all its correction graphs are acyclic and connected

Not sure if it stays quite linear,
but it is easy to see this can be
done in N2 time

MILLT proof nets

f(w;;tl)

Elazl.f(:cg,:cl)

[33022583]

‘v’aco.EI:cl.f(:co,azl)

|
f($3,$1)

|
ng.f($3,$1)

[5132225131]

+
E|£CQ.V$3.f(5133,332)

MILLT prootf nets

f(fBS—,ﬂUl) floaw.)

s

Elazl.f(_:cg,azl) \V/[Eg.f(xg,a?l)
_/
[CCQtZCEg] [513222381]

- T
‘v’xO.Elxl.f(azo,:cl) 3%2.\7%3.]0(:133,%2)

Example:

proof nets without planarity

=
B + S
p(2<) /V:Uo n(3,4) np(2,4)
0
‘[:=4] ‘[mQ::él]
- - - - +
np(0,1) Vi Vo n(3,4) s(0,4)

Jim proved the theorem

Notions of complexity - order

order(p) =0
order(A — B) = max(order(A) + 1, order(B))

* roughly speaking, the order of the formulas used in type-
logical grammars is an indication of the complexity of the
semantic operations

* in treebanks, order 3 or 4 seems to suffice (order 4 occurs
for gapping of auxiliaries and the copula)

Notions of complexity - width

the width of a formula is the maximum number
of free variables occurring in its subformulas

* roughly speaking, formula width corresponds to the
complexity of the string operations: width 2 corresponds
to operations on strings, width 4 pairs of strings etc.

* it is a more robust notion than predicate arity

A-grammars

lLambda-grammars

* Formalism introduced by Curry (1961) and Oehrle (1994), called
(depending on the authors) A-grammars (Muskens), abstract
categorial grammars (de Groote e.a.) and linear grammars (Pollard)

+ Replace strings by (simply typed, linear) lambda-terms

* Lambda grammars and first-order linear logic: all the hard work is
done in Kanazawa (2011), de Groote (2015).

Using pairs of string positions

0 1 2 3

Mary loves | someone

o2 (Mary’ 2o g

np
A7 AP Ay (p (loves % (qy))) : (0 > 0)—=(0c - 0)—0 — 0
(np; ol mD e Dl

e)2 a0 (P oomeone 2) lla g g a0
loos =0 5k ool

Using pairs of string positions

0 1 2 3

Mary loves | someone

ol Dlary it o)1 0

np
b ol B (pllovess i qy))) (B s 2) (1 Ay B
Gy =9 Wy =0 G

b E D D (B someone)2 (3 -2 D € D@
Wity o

Using pairs of string positions

0 1 2 3

Mary loves | someone

b 0B (ploves” T (gy))) (B 22) > (1 s A B - 4
—(np(A,1)—s(4, B))

Hybrid type-logical grammar

* Lambda-grammars are a fragment of first-order linear logic which
contains only negative universal and positive existential quantifiers
(in terms of classical proof nets, there are no universal links).

+ Hybrid type-logical grammar (Kubota & Levine 2013) add the
Lambek connectives to lambda-grammars: we are allowed to replace
atomic formulas of type c—o by Lambek calculus formulas. From the
current point of view, this means composing the two translations.

* The goal of this addition is to address some of the challenges of
lambda-grammars we will see later.

A Visual Comparison of the
Difterent Calculi - MILILI1

functor/argument { \ /
string positions { ‘

A Visual Comparison of the
Ditterent Calculi - 1.

AB-grammar

/\\

. . . .
. .
. .
. .
. .
. .
B
. .
. .

A Visual Comparison of the
Ditterent Calcuh - D

Lambek grammar <

- : : .

A Visual Comparison of the
Different Calcuhi - A-grammars

2nd-order A-grammar

I\
Ll FEN

@ o . .
. .
. .
. .
. .
. .
. .
. .
. .
T
Q .

A Visual Comparison of the
Different Calculi - hvbrid

Lambek grammar A-grammar

(Convergence

* In many cases (eg. for relativizers and quantifiers), analyses proposed
¥ & q yses prop

independently for the different formalisms are identical on translation
into MILL1

(Moot & Piazza 2001)
lisomeone c;,e;) =Vxovoilnple, ¢, oslzy, ¢1)) os(By, 21

e

(Morril e.a. 2011) (Oehrle 1994)

someone: (s T np) | s APAz.((P someone), z) : (np —o s) —o s

Problems for lambda grammars

Using the missing universal link as
a diagnoslic

+ Look at prototypical applications of the universal link.
* In some cases, such as Lambek formulas s/(np\s) and (n\n)/(s/
np), we can sidestep the absence of the universal link and make

better predictions.

+ Is this true for other cases?

ACG/lambda grammar problems

1. John deliberately hit Mary. (adverbs)

2. John bought a sandwich and ran to the train. (VP coordination)
3. John caught and ate a fish. (TV coordination)

4. John loves but Mary hates Noam. (right-node raising)

5. John bought himself a present. (reflexives)

6. John gave himself and every/a pretty girl a present.

7. John studies logic and Charles, phonetics. (gapping)

8. John left before Mary did. (ellipsis)

Are these really problems?

* These are problems according to the exact same standards as medial
extraction is a problem for the Lambek calculus.

* Hence, saying the the ACG/lambda grammar treatment of extraction
is superior to the Lambek calculus treatment, means admitting other
type-logical grammars have a superior treatment for many other
phenomena (unless we want to evaluate ACG/lambda grammars to
lower standards than we apply to other formalisms)

Are these new problems?

* A move to [lambda grammar] representations [...] does not seem to
be compatible with this analysis [of coordination] (Muskens, 2001)

+ [with respect to adverbs] Some extra machinery therefore needs to be
developed in order to get a grammar in Curry’s spirit working

(Muskens, 2010, p.130).

+ Lambek categorial grammars essentially fail to deal with medial gaps.
[...] This is a direct consequence of the attempt to regulate word order
on the level of the type system. In fact, a lot of research carried out
within the Lambek paradigm can be seen as the invention of a series

of epicycles needed to counter this architectural mistake. (Muskens,
2010, p.131)

Adverbs

1. John deliberately hit Mary.

Lambek (np\s)/(np\s)
MILL1 (Venp(e,2) — s(c, D)) —np(E,1) — s(E, D)

2>1F((2—2c¢)»D—>c)-(1-E)->D—>FE

Enumerating lexical entries

* For the Lambek calculus, we could enumerate all possible syntactic
types given a deep structure type simply by choosing “/” or “\” for
each of the implications.

* For lambda grammars, we obtain a prosodic type from the deep
structure type and can enumerate all (linear) lambda terms using
inhabitation machines (van Benthem was the first to use these in the
context of categorial grammars for enumerating possible semantic
terms).

Inhabitation machine for the
adverb

((0 >0)—>0—0)—>(0d—0)—>0—0

A VP(O‘—)O‘)—)O‘—)O'NPO'%O'ZO'
d oo NP

il

Ay P Z Yy

The candidate corresponding to the Lambek formula is uninhabited. However, we can try to
approximate it, we can enumerate all possible lambda-terms for the given “deep structure”

type and keep only those which can generate the correct word order. (We can use
inhabitation machine, which have been used for categorial grammars at least since (van
S/ e I S Benthem 1991)

1. John deliberately hit Mary.

(2—2¢c)=>D—c)w(1-FE)>D—FE

a) A\VPANPAz.NP (d ((VP Ay.y) z)) :
(C—-C)»D—-2)-(1—->F)—D—FE

b) \VPANPMAz.NP ((VP A\y.d y) z) :
(2—->1)>D—-C)»(C—>FE)->D—>FE

c) \VPANP)\z.((VP Ay.NP (d y)) z) :
(2—-C)»D—FE)—»(1-C)—=D—FE

What does this mean? It means an adverb first selects a sentence
missing an NP *anywhere*, then a noun phrase juste before it which will

S | I be the subject *semantically*.

a) A\VPANP)\z.NP (d ((VP A\y.y) z)) :
(C—-C)—-»D—-2)-(1—->FE)—>D—>F

John mnp(0,1)
deliberately (np(C,C) — s(2,D)) —o np(E,1) —o s(E, D)
hit np(A,2) — np(3, B) — s(A, B)
Mary np(3,4)

1. John deliberately Mary hit.
2.John deliberately Mary claims likes Susan.

3. John deliberately Mary hit the sister of.

“deliberately” occupies an NP position (already a bit strange!) to form an S, we

Adverbs

b) \VPANPAz.NP ((VP Ay.d y) z) :

(2—-1)»D—-C)—»(C—>FEF)—>D—FE

John np(0,1)
deliberately (np(2,1) — s(C, D)) — np(F,C) — s(F, D)
hit np(A,2) —np(3, B) — s(A, B)
Mary np(3,4)

This could be an extraposition sentence, but it is very

1 . Ma]_‘y]Ohn hit deliberately. strange to have an *adverb* license extraposition

Meaning: tt was deliberate *on the part of Mary* that John
hit her

2. Mary the friend of deliberately left.

3. Mary John gave the friend of deliberately a book.

“deliberately” is a sort of noun postmodifier: it can occur
after any noun and the noun it modifiers will do things

Adverbs

gl \VPANPA2.({(VP \y.NP (d y)) 2) :

C)-D—FE)—-(1—-C)—D—FE

2

John np(0,
deliberately (np(C,2) — s(E, D)) — np(C,1) — s(FE, D)
hit np(A,2) — np(3, B) — s(A, B)
3

Mary np
1. John hit Mary deliberately.

2. The friend of Mary deliberately left.

3. The friend of Mary deliberately who lives in Paris left.

Adverbs

* The best approximations that we can obtain all suffer from
overgeneration because non-commutativity is insufficiently
enforced.

+ Can we work around the problem using additional lexical entries?

* We can add many new lexical entries, by optionally replacing all
occurrences of np\s by a new atomic formula, say vp.

+ Apart from the ad hoc nature of this solution, we would essentially
double the number of lexical entries for adverbs, verbs and
prepositions - which already have a high number of formulas - for
a single type of example. And many more will follow...

Coordination

4. John caught and ate a fish.
(mp—onp—s) > nmMp—onp—>s) >np—np— S

“and” is a transitive verb conjunction;

we can reject many of the possible surface structure lambda-terms
directly (eg. NP as argument of TV or the string “and” spanning an
NP position) for reasons similar to the adverb case. However, there is a
new type of term, which looks superficially correct.

ATVIANTVIANP2ANPI)Az.
NP1 ((TV1Az.x My.y)(and ((TV2Av.v Aw.w)(NP2z))))

Coordination

al=(np—onp—>s)=>(np—onp—>s) >np—>np — s
a2=(np—-onp—>s) =>np—>np—Ss

and ate
caught al 7Ap-—>np-—>8
np — np — S a2 a fish
John P = BP0 5 np
np np — S

S

(((anda)c) f)j

Coordination

al=(np—onp—>s)>(np—onp—>s) >np—>np — s
a2 =(np—onp—>s) =>np—>np—Ss

ate J
_T mnp—np—s [np]?

[np]’ np — s
2T
and np— s -1

caught al np — np — 8 1

np — np — S a2 a fish
John np —np —$§ np
np np — s

S

((andAy.Az.((ay)z)c) f)J

Coordination

As observed by Kubota & Levine (2013), this produces
“John caught and ate a fish”
with semantics “John caught a fish and a fish ate John”

ate J
_ T mp—onp—s [np|?

[np]! s
=T
and np — s 2

caught al np — np — 8 Iy

np — np — S a2 a fish
John np e np o 5 np
np np — s

S

(((and Az Ay.((ay)) ¢) f) j = (((and(Ca))c) f) j

Coordimation

* Again, non-commutativity is insufficiently enforced, but this time
in the form of strange semantics.

* The problem is that we want to say that “and” takes two transitive
verb arguments, whereas we can only say it takes two sentences
each missing two noun phrases (with no restriction as to where they
are missing).

* Adding a new atomic lexical entry (say fv), is again not an
attractive option, since we would need many additional entries to
handle cases like “John has understood and will probably
implement Dijkstra's algorithm” (no extra work is needed in the
Lambek calculus for examples of this kind)

“and” takes two sentences missing a transitive
verb, then a transitive verb to form a sentence,
and it does so by “plugging” the transitive verb

°
‘ : . p p 1 [l g into the leftmost sentence missing a transitive
verb

7.John studies logic and Charles, phonetics.

(np—>np—s)—=s)=>((nponp—>s)—=s)—(np—np—s) —s

ASTVIEASTVIANTV Az ((STVIAOINSIAz.((TV w.O1w) Av.S1v)) x)
(and (STV2X02)\S2)\y.52(02y)) z))

=
ASTVEASTVIATVAz.((STVI TV)
(and (STV2A02AS2My.52(02y)) z))

Gapping

bl=((np—onp—s)—s) > (nponp—s)—>s) > np—onp—>s) —s
b2=(np—np—>s)—s) = (np—o>np—s) —s

Q phonetics
P logic Charles [np — np — s]° np
John [np—tnp—s|' “mp oL e w s
np np — s and 2 5
3 - bl (np — np — s) — s
1
(np — np —s) = s b2 -
(np —>np —s) = s np — np — s

S

(((and AQ.((Qp) c)) AP.((P1) j)) 5)

Gapping

bl=((np—>np—5s)—s)—=>((np—>np—>s) —>s)—=>(np—>np—s8) —s
b2=((np—>np—s)—>s)—(np—onp—s) —s

¢ phonetics
B logic Charles [np — np — s]° np d i
1 np np — s studies
np — np — S np
J%&)n | np — s] and S i L?, np—>np 535 [npl
3 I bl (np—>np—s) —>s [np] np — s
1

(np > np—s) = s b2 ﬁ]g

(np —np —s) = s np—>np—>sl4

S

(((and AQ.((Qp)) AP.((P1) j)) Az Ay.((s) y))

Gapping

“John studies logic and Charles phonetics” with meaning
“John studies logic and phonetics studies Charles”

Q phonetics
I John Charles [np — np — s]? np : ;
logic |np —np—s|' “np np np — S studies y
and s _ T npp—onp—>s [np
np np — s ana " .
S 7 bl (np—>np—s)—s [np] np — s
4 S
(np = np — s) > s b2 —np—>sl4
(np = np — s) — s np—>np—>sl3

S

(((and AQ.((Qp) ¢)) AP.((P j) 1)) Az.Xy.((s y) x))

Solutions?

* Abandon type-logical deep structure and /or restrict the field of
application of ACGs

* Hold lambda grammars to lower standards of adequacy than Lambek
grammars

+ Extend the formalism

Extending lambda grammars

The LLambek calculus

and 1ts extensions

lLambda grammars and variants/
exlensions

Linear

Eixtensions of lambda grammars

* ACGra: add tree automata (Kanazawa)

* Linear grammar: add subtyping and term constraints
“phenomenators” (Worth & Pollard)

* Hybrid type-logical grammars: add Lambek calculus connectives
(Kubota & Levine)

* ACGpep: add dependent types/terms (Pogodalla & Pompigne)

* First-order linear logic: add missing rules for introduction of the

universal quantifier and elimination of the existential quantifier
(Moot & Piazza)

A brief comparison of the
extensions

Solves problems Kmeomiblls Too powertul

Complexity

Linear

Dependent : probably

First-order yes yes no

Standard architecture

deep structure

simply typed
A-calculus

simply typed
A-calculus

formula

surface structure logical form

Dependent types

Dependent

types
forgetful map

deep structure

simply typed
A-calculus

simply typed
A-calculus

formula

surface structure logical form

First-order linear logic

forgetful map

deep structure

simply typed
A-calculus

simply typed
A-calculus

formula

surface structure logical form

First-order linear logic

forgetful map

deep structure

simply typed
A-calculus

logical form

First-order linear logic

dependent types

logical form

Conclusions

Open Questions

* Are there other extensions of lambda grammars which solve the
problems without increasing the complexity?

+ What are the relations of all these different logics to each other?

* Are there more empirical data for which these different formalisms
differ in their predictions, and help us choose between them?

* What about formal language theory? We know almost no upper
bounds for extended Lambek calculi, since the methodology of the
Pentus proof does not extend to more complicated logics.

Conclusions

* One of the measures of the success of a theory is the number of its
purported successors. In this sense the lambda grammar framework
developed by Oehrle and others has been immensely successful.

* A number of potential solutions to the problems with lambda
grammars has been proposed. I believe first-order linear logic is a
good candidate for the underlying “machine language” of many
grammatical logics.

* First-order linear logic is a natural logical extension of lambda
grammars. Moreover it conveniently allows to to mix-and-match
existing analyses from lambda grammars, hybrid type-logical
grammars and the Displacement calculus.

References

+ Haskell Curry (1961), Some logical aspects of grammatical structure, Structure of
language and its mathematical aspects, 56-68.

* Jean-Yves Girard (2001), Quantifiers in linear logic II, ‘nuovi problemi della logica e
della filosofia della scienza’, Vol. II, CLUEB, Bologna.

* Philippe de Groote (2001), Towards abstract categorial grammars, Proceedings of the
39th annual meeting of the Association for Computational Linguistics.

+ Joachim Lambek (1958), The mathematics of sentence structure, American
Mathematical Monthly 65(3), 154-170.

+ Makoto Kanazawa (2011), Parsing and generation as Datalog query evaluation

* Yusuke Kubota & Robert Levine (2013), Empirical Foundations for Hybrid Type-
logical Categorial Grammar, course notes, ESSLLI 2013.

References

+ Michael Moortgat (2011), Categorial type logics, Handbook of logic and language,
Elsevier, 95-179.

+ Richard Moot (2013), Extended Lambek calculi and first-order linear logic

* Richard Moot & Mario Piazza (2001), Linguistic applications of first-order
multiplicative linear logic, Journal of Logic, Language and Information 10(2), 211-232.

+ Glyn Morrill, Oriol Valentin and Mario Fadda (2001), The displacement calculus,
Journal of Logic, Language and Information 20(1), 1-48.

* Reinhard Muskens (2003), Languages, Lambdas and Logic, Resource sensitivity,
binding and anaphora, Springer, 23-54.

* Richard Oehrle (1994), Term-labeled categorial type systems, Linguistics &
Philosophy 17(6), 633-678.

Why ACGra (Kanazawa, 2015) 1s

not a solution

* ACGra suffers from overgeneration; notably it does not actually solve
the problems it set out to solve

* ACGra suffers from undergeneration, even for linguistically relevant
examples

* ACGrta does not provide a treatment of discontinuous gapping which
is superior to other type-logical grammars (eg. Kubota & Levine)

Overgeneration

1. Terry hates and Leslie likes Robin (right-node-raising)

2. What did Peter buy last week and throw away yesterday? (across-
the-board extraction)

3. I wonder which song Peter composed yesterday and Susan sang
today. (across-the-board extraction)

Overgeneration

1. Terry hates and Leslie likes Robin (right-node-raising)

2. What did Peter buy last week and throw away yesterday? (across-
the-board extraction)

(np(0,0) — 5(0, R)) —o (np(0,0) —o s(L,0)) — np(0,0) —o s(L, R)
APAQMx.(Pe€) + and + (Q x)
Problem: the lexical assignments required for 2) and 3) have as

an immediate consequence that 1) is predicted to have a reading
meaning “Terry hates Robin and Robin likes Leslie”

Overgeneration

Aso.Atg.to + hates + sq
np(0,V1) — (np(U1,0) - s(U1,V1))

{ ro } 2 Asg.Mo.to + hates + sq il Aso. Moo + likes + so
np(0,0) np(0,0) — (np(0,0) — s(0,0)) np(0, X1) — (np(W1,0) — s(W1,X1))
terry Ato.to + hates + ro i leslie ASa. Mo .ty + likes + s e AS4. Atg. Ap5.(ta€) + and + (s4p5)
np(0,0) np(0,0) — 5(0,0) e np(0,0) np(0,0) —o (np(0,0) —o 5(0,0)) e (np(0,0) —o (0, Z1)) —o ((mp(0,0) —o 5(Y1,0)) —o (np(0,0) — (Y1, Z1)))
terry + hates + ro Ato.to + likes + leslie AS4. M4 Ap5.(ta €) + and + (s4p5)
s(0,0) i, np(0,0) — 5(0,0) (np(0, 0) — 5(0,0)) —o ((np(0,0) —o 5(0,0)) —o (np(0,0) — 5(0,0))) -
Arg.terry + hates + r¢ 2 A4 Aps.(ts €) + and + ps + likes + leslie @
np(0,0) — 5(0,0) (np(0,0) — 5(0,0)) —o (np(0,0) —o 5(0,0))
robin Aps.terry + hates + and + ps + likes + leslie 7k
np(0,0) np(0,0) — s(0,0)

terry + hates 4+ and + robin + likes + leslie
s(0,0)

Undergeneration

4. Captain Jack served lobster today and
bananafish yesterday

er,, + (er, + lobster)

}

(6L1 o O)

FAILS

€r, lobster

Undergeneration

5. Happy slipped into the mansion
very discreetly

[np]' [np\s]’

\FE

S discreetl
\1 -

np\s (np\s)\(np\s)

np\s

LLLLLL

eeeeee

Gapping

1. *John met the vice-president of IBM and Betsy [met the vice-
president of] Xerox. (problem for all analyses I know)

2. *John met the vice-president of IBM in France and [John met the vice-
president of] Xerox [in] Italy. (problem for Kanazawa but not for
others)

3. *John introduced the vice-president of IBM to the chairman of Xerox
and [John introduced the vice-president of] Microsoft [the chairman
of] Apple. (problem for Kanazawa but not for others)

