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Overview

✤ Lambek grammars

✤ Lambda grammars

✤ Lambda grammars as a fragment of first-order linear logic

✤ Problems and extensions



The Lambek calculus



The Lambek calculus

✤ A logical calculus for natural language syntax and semantics 
introduced in (Lambek 1958)

✤ Two connectives:

• A/B (A over B)

• B\A (B under A)

✤ The Curry-Howard isomorphism allows us to combine the Lambek 
calculus with natural language semantics in the tradition of 
Montague.



The Lambek calculus
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Limitations of the  
Lambek calculus

✤ Though the Lambek calculus handles the basics of Montague 
grammar, it has problems with non-peripheral wide scope.

✤ Lambek grammars generate only context-free languages; some 
natural languages demonstrate non-context-free phenomena like 
copying and multiple/crossed dependencies.

✤ To deal with these problems, a large number of extensions to the 
Lambek calculus has been proposed.



Medial extraction

✤ It is often claimed that the Lambek calculus cannot handle medial 
extraction, eg. that phrases like the following are underivable.

1. contracts which John filed yesterday

✤ What do we mean exactly when we make claims like this?



Semantic types
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Deep structure
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Lambek calculus pseudo-proof

which
(n\n)/(np ( s)

Lex

John
np Lex

filed

(np\s)/np Lex
[np]1

np\s
/E

s \E
np ( s ( I

n\n
/E



Medial extraction in L (solution 1)

contracts n
which (n\n)/snp
which (n\n)/(np\s)
John np
filed (np\s)/np
filed np\snp

yesterday (np\s)\(np\s)
yesterday (np\snp)\(np\snp)
without (np\snp)/(np\singnp)
without (np\s)/(np\sing)
reading np\singnp
reading (np\sing)/np
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contracts n
which (n\n)/snp
which (n\n)/(np\s)
John np
filed (np\s)/np
filed np\snp

without ((np\s)\(np\s))/(np\sing)
without ((np\snp)\(np\snp))/(np\singnp)
reading np\sing/np
reading np\singnp

Medial extraction in L (solution 1)



Medial extraction in L (solution 2)

✤ Emms proposes the second-order formula ∀X. ((n\n)/(X\s))/(X/np) 
for extraction.

✤ We can select a suitable finite set of instantiations of this type to at 
least approximate medial extraction



Two forms of inadequacy

✤ Shieber (1988) distinguishes between the absolute 
expressiveness and the functional expressiveness of formal 
systems

✤ the Lambek calculus cannot handle extraction in terms 
of functional expressiveness

✤ the Lambek calculus cannot handle Montague-style 
quantifier scope in terms of absolute expressiveness (by 
a simple counting argument)



Descriptive adequacy

✤ Claims that the Lambek calculus cannot handle medial extraction 
presuppose both type-logical deep structure and a descriptive 
adequacy criterion (that is, avoiding lexical duplication).

✤ Solution 1 does not generalise very well to multiple extraction, 
multiple medial quantification (which can only be approximated), 
gapping, etc.

✤ If we allow duplication of lexical entries and atomic formulas, then it 
becomes very hard to falsify any type-logical grammar (even 
impossible if we allow approximation).



Extensions and variants of the 
Lambek calculus



Common core architecture of 
type-logical grammars
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The Lambek calculus 
and its extensions
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≈ interaction nets

Proof nets as 
graph rewriting

Moot & Puite (2002), Moot 
(2007),Moot & Retoré (2012), 

Moortgat & Moot (2013)
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Multiplicative first-order  
linear logic



Parsing using string position pairs

Jim proved the theorem
np (np\s)/np np/n n

0 1 2 3 4



Parsing using string position pairs
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Parsing using string position pairs
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Parsing using string position pairs

∀x.n(3,x)⊸np(2,x) n(3,4)
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Parsing using string position pairs

∀x.n(3,x)⊸np(2,x) n(3,4)

Jim proved the theorem
np (np\s)/np np/n n

0 1 2 3 4

np(2,4)∀z.np(2,z)⊸∀y.np(y,1)⊸s(y,z)
∀y.np(y,1)⊸s(y,4)np(0,1)



Parsing using string position pairs

∀x.n(3,x)⊸np(2,x) n(3,4)

Jim proved the theorem
np (np\s)/np np/n n

0 1 2 3 4

np(2,4)∀z.np(2,z)⊸∀y.np(y,1)⊸s(y,z)
∀y.np(y,1)⊸s(y,4)np(0,1)

s(0,4)



Lambek calculus and MILL1

5.1 Proof Theory 75

‖a‖〈ei,ej〉 = a(ei, ej)
‖A/B‖〈ei,ej〉 = ∀xk.‖B‖〈ej ,xk〉−◦‖A‖〈ei,xk〉

‖B\A‖〈ei,ej〉 = ∀xk.‖B‖〈xk,ei〉−◦‖A‖〈xk,ej〉

‖A • B‖〈ei,ej〉 = ∃xk.‖A‖〈ei,xk〉 ⊗ ‖B‖〈xk,ej〉

Note that this definition guarantees that the translation of any non-atomic
formula is of the form Qx.A#B, where Q is a quantifier and # a binary
connective.

Lemma 5.9 If an L sequent is translated into a sequent provable in MILL1, then
there is also aMILL1 proof of the same translated sequent where every conclusion of
a rule with main formulaA#B is the premiss of a rule with main formulaQx.A#B.

Proof We show only the case for formulas ∃x.A ⊗ B. The cases for the
implications are similar.

Suppose we have a subproof of the form

∆ ' A ∆′ ' B
∆, ∆′ ' A⊗B

[R⊗]
.... Π

Γ ' A⊗B
Γ ' ∃x.A⊗B

[R∃]

we can move the application of the [R∃] rule up as follows

∆ ' A ∆′ ' B
∆, ∆′ ' A⊗ B

[R⊗]

∆, ∆′ ' ∃x.A ⊗B
[R∃]

.... Π
Γ ' ∃x.A⊗ B

as applying the rules in Π with ∃x.A ⊗ B instead of A ⊗ B is unproblematic
because we have one free variable less.

For the other case, suppose we have a subproof of the form

∆, A, B ' D
∆, A⊗B ' D

[L⊗]
.... Π

Γ, A⊗B ' C
Γ, ∃x.A⊗B ' C

[L∃]

we can move the application of the [L⊗] rule down as follows

∆, A, B ' D.... Π
Γ, A, B ' C

Γ, A⊗B ' C
[L⊗]

Γ, ∃x.A⊗B ' C
[L∃]

See Moot & Piazza (2001) for the 
correctness of this translation 



MILL1 natural deduction
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MILL1 proof structures: links
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MILL1 proof nets: switchings
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Table 3. Logical links for MILL1 proof structures

link, on the top right, does not have a conclusion, all logical links have a single
conclusion), the formulas drawn above the link are its premisses.

Definition 1. A proof structure is a set of polarized formulas connected by
instances of the links shown in Table 3 such that each formula is at most once
the premiss of a link and exactly once the conclusion of a link. Formulas which
are not the premiss of any link are called the conclusions of the proof structure.
We say a proof structure with negative conclusions � and positive conclusions
� is a proof structure of the statement � ` �.

Definition 2. Given a proof structure ⇧ a switching is

– for each of the par links a choice of one of its two premisses,

– for each of the universal links a choice either of a formula containing the
eigenvariable of the link or of the premiss of the link.

Definition 3. Given a proof structure ⇧ and a switching s we obtain a correc-
tion graph G by

– replacing each par link by an edge connecting the conclusion of the link to
the premiss selected by s

– replacing each universal link by an edge connecting the conclusion of the link
to the formula selected by s

Whereas a proof structure is a graph with some additional structure (paired
edges, draw as connected dotted lines for the par links, and “universal” edges,

A B

C

A B

C



MILL1 proof nets: switchings
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MILL1 proof nets: switchings

∀x.A

A

∀x.A

A

In addition, a switching can connect the 
conclusion of the link to any formula containing a 
free occurrence of the variable x

replace dotted link by solid link: 
boring (necessary only for 
“vacuous” quantification (no 
occurrences of x in A)

Interesting case: connect to formula 
with free occurrence of x



MILL1 proof nets

Theorem (Girard 1991)
A first-order multiplicative proof structure is a proof net 
iff all its correction graphs are acyclic and connected

Not sure if it stays quite linear, 
but it is easy to see this can be 
done in n^2 time



MILL1 proof nets

72 Proof Nets for First Order Linear Logic

(iv) Those formulas which are not the premiss of any link are the conclusions of
the proof structure. Conclusions must be closed.

5.1.3 Proof Nets
While we can show by induction on the length of the proof that we can as-
sociate a proof structure with every sequent proof, it should be obvious that
not all proof structures correspond to sequent proofs.

Example 5.3 Though the sequent ∀x0.∃x1.f(x0, x1) # ∃x2.∀x3.f(x3, x2) is un-
derivable, it corresponds to the following proof structure.

−
∀x0.∃x1.f(x0,x1)

[x0:=x3]

−
f(x3,x1)

−
∃x1.f(x3,x1)

+
∃x2.∀x3.f(x3,x2)

[x2:=x1]

+
f(x3,x1)

+
∀x3.f(x3,x1)

A subset of proof structures, which we will call proof nets, does corre-
spond to sequent proofs. We can distinguish proof nets from other proof
structures by looking only at properties of the underlying graphs of proof
structures.

Definition 5.4 From a proof structure we obtain a correction graph by

(i) replacing all links

B C

A

by one of the following links.

B C

A

B C

A



MILL1 proof nets

5.1 Proof Theory 73

(ii) replacing all links

B

A

with eigenvariable x by a link from A to any formula in which x occurs freely
or by a link from A to B.

Theorem 5.5 (Girard (1991)) A proof structure is a proof net if and only if all its
correction graphs are acyclic and connected.

Example 5.6 Returning to our previous example, we should be able to find a cor-
rection graph of that proof structure which violates the proof net condition. Of the 9
correction graphs we can associate with that proof structure, the following

−
∀x0.∃x1.f(x0,x1)

−
∃x1.f(x3,x1)

−
f(x3,x1)

+
∃x2.∀x3.f(x3,x2)

+
∀x3.f(x3,x1)

+
f(x3,x1)

[x0:=x3] [x2:=x1]

is both disconnected and cyclic.

5.1.4 Embedding the Lambek Calculus

As a prelude to our linguistic applications we will first show a translation of
formulas and sequents in the Lambek calculus into formulas ofMILL1.

Lambek Calculus

Definition 5.7 (Language) The language L(L) is the following

[Alphabet] The alphabet consists of the following symbols: a finite set of atomic
formulas A, the binary connectives ‘/’, ‘•’ and ‘\’, the sequent arrow ‘!’ and
the auxiliary symbol ‘,’.

[Formulas] The formulas of L are the following
F ::= A | F/F | F • F | F\F

think of f as “has a father”



Example: 
proof nets without planarity5.2 Linguistic Applications 81

For reasons of space, we have written only the main connective at each
node of the proof structure and indicated the substitutions next to the unary
links.

−
np(0,1)

−
∀x1

[x1:=4]

+
np(2,4)

−
−◦

−
∀x0

[x0:=0]

+
np(0,1)

−
s(0,4)

−
−◦

−
∀x2

[x2:=4]

+
n(3,4)

−
np(2,4)

−
−◦

−
n(3,4)

+
s(0,4)

Figure 5.1: Proof net for ‘Russell wrote the article’

In the remainder of this section we will discuss a number of linguistic
phenomena which have no satisfactory treatment in L, and sketch how they
can be treated in the more expressive framework we are proposing here.

5.2.1 Quantifier Scope

It has been noted since Montague (1974) that quantifiers like ‘someone’ and
‘everyone’, though they occupy np positions in a sentence, may take scope at
the sentence level.

In the Lambek calculus, we can account for some of the consequences of
this fact by giving a quantifier two assignments in the lexicon: one when it
occurs as an subject, and one for when it occurs as a (direct) object.

l′(someone) = s/(np\s)
= (s/np)\s

l′(everyone)= s/(np\s)
= (s/np)\s

These assignments allow us to derive classic sentences like

(5.1) Someone sleeps.

(5.2) Someone wrote the article.

(5.3) Everyone likes someone.

but not

Jim proved the theorem



Notions of complexity - order

✤ roughly speaking, the order of the formulas used in type-
logical grammars is an indication of the complexity of the 
semantic operations

✤ in treebanks, order 3 or 4 seems to suffice (order 4 occurs 
for gapping of auxiliaries and the copula)

order(p) = 0

order(A ( B) = max(order(A) + 1, order(B))



Notions of complexity - width

✤ roughly speaking, formula width corresponds to the 
complexity of the string operations: width 2 corresponds 
to operations on strings, width 4 pairs of strings etc.

✤ it is a more robust notion than predicate arity

the width of a formula is the maximum number
of free variables occurring in its subformulas   



λ-grammars



Lambda-grammars

✤ Formalism introduced by Curry (1961) and Oehrle (1994), called 
(depending on the authors) λ-grammars (Muskens), abstract 
categorial grammars (de Groote e.a.) and linear grammars (Pollard)

✤ Replace strings by (simply typed, linear) lambda-terms

✤ Lambda grammars and first-order linear logic: all the hard work is 
done in Kanazawa (2011), de Groote (2015).



Using pairs of string positions

Mary loves someone

0 1 2 3

�P (�!�)!�!��z�.((P someone�!�) z) : ((� ! �)!� ! �)!� ! �
((np ( s) ( s)⇤

�q�!��p�!��y�.(p (loves�!�(q y))) : (� ! �)!(� ! �)!� ! �
(np ( (np ( s))⇤

�z�(Mary�!�z) :� ! �
np⇤



Using pairs of string positions

Mary loves someone

0 1 2 3

�z1(Mary1!0z) : 1 ! 0
np⇤

�P (3!2)!D!C�zD.((P someone3!2) z) : ((3 ! 2)!D ! C)!D ! C
((np ( s) ( s)⇤

�qB!2�p1!A�yB .(p (loves2!1(q y))) : (B ! 2)!(1 ! A)!B ! A
(np ( (np ( s))⇤



Using pairs of string positions

Mary loves someone

0 1 2 3

�z1(Mary1!0z) : 1 ! 0
np(0, 1)

�qB!2�p1!A�yB .(p (loves2!1(q y))) : (B ! 2)! (1 ! A)! B ! A
np(2, B)((np(A, 1)(s(A,B))

�P (3!2)!D!C�zD.((P someone3!2) z) : ((3 ! 2)!D ! C)!D ! C
(np(2, 3)(s(C,D))(s(C,D)



Hybrid type-logical grammar

✤ Lambda-grammars are a fragment of first-order linear logic which 
contains only negative universal and positive existential quantifiers 
(in terms of classical proof nets, there are no universal links).

✤ Hybrid type-logical grammar (Kubota & Levine 2013) add the 
Lambek connectives to lambda-grammars: we are allowed to replace 
atomic formulas of type σ→σ by Lambek calculus formulas. From the 
current point of view, this means composing the two translations.

✤ The goal of this addition is to address some of the challenges of 
lambda-grammars we will see later.
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A Visual Comparison of the 
Different Calculi －D
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Lambek grammarz }| {

Hybrid grammar

The hybrid solution to this problem: reintroduce the positive Lambek con-

nectives directly. There are now two ways of coding the negative Lambek con-

nectives. The resulting system is also greater than the sum of its parts, since

gapping, which has a satisfactory neither in Lambek grammars nor in lambda

grammars, can be elegantly treated in hybrid categorial grammar.

Symmetry is still lost, but empirically the system seems comparable to the

Displacement calculus: the Displacement calculus has the full symmetry absent

from hybrid type-logical grammars and hybrid type-logical grammars (unlike

the Displacement calculus) can represent non-well-nested MCFGs, but it is de-

batable wheter this distinction has an empirical bite: it seems the analyses

proposed for the two formalisms basically agree, as is especially made clear by

their translation into MILL1.

.Lambek grammar

8
>>>>><

>>>>>:

.

. . .

.

.

. . .

. . . .

D grammars, binary

D grammars have a di↵erent perspective. Functor argument structure and

string positions are still joined, but a greater number of combinations are possi-

ble (from 0 to n quantifiers, for a small value of n determined by the grammar).

Lambek grammars are now the restriction to a single quantifier for each binary

connective.

3



A Visual Comparison of the 
Different Calculi － λ-grammars

Curry’s (1961) criticism of the Lambek calculus connectives, seen from the

current perspective, is that they combine subcategorization information (functor-

argument structure) and string operations. Though from a modern proof-

theoretical point of view (ludics/focusing) it is perfectly valid to combine mul-

tiple positive and multiple negative rules into a single rule, separating the two

gives more freedom (that is, it allows us to express more relations between the

string positions and go beyond simple concatenation — the prefix and postfix

of the Lambek calculus).

.

.

.

. .

.

. .

2nd-order �-grammarz }| {

�-grammar

There is a loss of symmetry! This loss of symmetry is easy to miss in a

unification-base presentation of the logic (where the positive quantifier link is

implicit). For a logician/proof theorist, this is worrying since many classical

results and desirable properties of the system (restriction to atomic axioms,

cut elimination) depend on this symmetry. However, it is also the cause of

empirical inadequacy: positive A/B and B\A can no longer be represented,

hence no satisfactory treatment of adverbs, coordination, gapping etc.

Though Buszkowski’s (1996) variant of the Pentus theorem shows that we

do not need positive A/B and B\A provided we allow an explosion of the size

of the lexicon. This means lambda-grammars su↵er not only from descriptive

inadequacy (ie. an incapacity for expressing linguistic generalizations directly

in the formalism, needing excessive duplication in the lexical entries), they are

also ill-suited for parsing: they first have an exponential blowup of grammar

size and then are NP-complete, whereas Lambek grammars, MILL1 grammars,

hybrid grammars and D grammars all avoid this exponential blowup (since they

avoid this descriptive inadequacy problem) are just NP-complete.
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A Visual Comparison of the 
Different Calculi －hybrid

.

.

.

. .

�-grammarz }| {

.

. .

.

.

. .

.

.

. .

Lambek grammarz }| {

Hybrid grammar

The hybrid solution to this problem: reintroduce the positive Lambek con-

nectives directly. There are now two ways of coding the negative Lambek con-

nectives. The resulting system is also greater than the sum of its parts, since

gapping, which has a satisfactory neither in Lambek grammars nor in lambda

grammars, can be elegantly treated in hybrid categorial grammar.

Symmetry is still lost, but empirically the system seems comparable to the

Displacement calculus: the Displacement calculus has the full symmetry absent

from hybrid type-logical grammars and hybrid type-logical grammars (unlike

the Displacement calculus) can represent non-well-nested MCFGs, but it is de-

batable wheter this distinction has an empirical bite: it seems the analyses

proposed for the two formalisms basically agree, as is especially made clear by

their translation into MILL1.

.Lambek grammar

8
>>>>><

>>>>>:

.

. . .

.

.

. . .

. . . .

D grammars, binary

D grammars have a di↵erent perspective. Functor argument structure and

string positions are still joined, but a greater number of combinations are possi-

ble (from 0 to n quantifiers, for a small value of n determined by the grammar).

Lambek grammars are now the restriction to a single quantifier for each binary

connective.
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Convergence

✤ In many cases (eg. for relativizers and quantifiers), analyses proposed 
independently for the different formalisms are identical on translation 
into MILL1

82 Proof Nets for First Order Linear Logic

(5.4) Russell sent everyone the article.

Another problem arises with the following example. In Montague se-
mantics, a sentence

(5.5) Gödel believes someone sleeps

will have two readings, one in which there exists a specific person whom
Gödel believes to be sleeping (de re reading) and one in which an unknown
person is believed to be sleeping (de dicto reading).
In the standard Lambek calculus, only the second reading can be derived

with the lexical assignments above. This means we have to add a new lex-
ical entry for the quantifiers, and another if we want quantifiers to appear
in indirect object positions. Oehrle (1994) gives a good discussion of these
problems and proposes a solution in the form of string labeling.
Moortgat proposes the q operator for quantification

∆, A, ∆′ ! B Γ, C, Γ′ ! D

Γ, ∆, q(A, B, C), ∆′, Γ′ ! D
[Lq]

A problem with this operator is that it only allows a left rule to be formu-
lated, which makes it hard to view it as a logical connective. Decompositions
of the q connective into proper logical connectives, combined with an appro-
priate package of structural rules, have been proposed in (Morrill 1994) and
(Moortgat 1996a).
We can extend the translation function ‖.‖〈ei,ej〉 to translate q(A, B, C)

intoMILL1 as follows.

‖q(A, B, C)‖〈ei,ej〉 =∀x0.∀x1.(‖A‖〈ei,ej〉−◦‖B‖〈x0,x1〉)−◦‖C‖〈x0,x1〉

After which the [Lq] rule becomes a derived rule in the following way.

‖∆‖〈i,j〉, ‖A‖〈j,j+1〉, ‖∆′‖〈j+1,k〉 ! ‖B‖〈i,k〉

‖∆‖〈i,j〉, ‖∆′‖〈j+1,k〉 ! ‖A‖〈j,j+1〉−◦‖B‖〈i,k〉
[R−◦]

‖Γ‖〈1,i〉, ‖C‖〈i,k〉, ‖Γ′‖〈k,l〉 ! ‖D‖〈1,l〉

‖Γ‖〈1,i〉, ‖∆‖〈i,j〉, (‖A‖〈j,j+1〉−◦‖B‖〈i,k〉)−◦‖C‖〈i,k〉, ‖∆′‖〈j+1,k〉, ‖Γ′‖〈k,l〉 ! ‖D‖〈1,l〉 [L−◦]

‖Γ‖〈1,i〉, ‖∆‖〈i,j〉, ∀x1.(‖A‖〈j,j+1〉−◦‖B‖〈i,x1〉)−◦‖C‖〈i,x1〉, ‖∆′‖〈j+1,k〉, ‖Γ′‖〈k,l〉 ! ‖D‖〈1,l〉 [L∀]

‖Γ‖〈1,i〉, ‖∆‖〈i,j〉, ∀x0.∀x1.(‖A‖〈j,j+1〉−◦‖B‖〈x0,x1〉)−◦‖C‖〈x0,x1〉, ‖∆′‖〈j+1,k〉, ‖Γ′‖〈k,l〉 ! ‖D‖〈1,l〉 [L∀]

InMILL1we can assign generalized quantifiers the following lexical for-
mula

l(someone, ci, cj) =∀x0∀x1(np(ci, cj)−◦s(x0, x1))−◦s(x0, x1)
l(everyone, ci, cj)= ∀x0∀x1(np(ci, cj)−◦s(x0, x1))−◦s(x0, x1)

which, in the spirit of Montague’s ‘quantifying in’ rule, lets a quantifier take
as its input a sentence s (regardless of the position labeling) which is incom-
plete for a noun phrase np at the position of the quantifier, where the output
will be a sentence spanning the same positions as the incomplete sentence.

(Morril e.a. 2011) (Oehrle 1994)

(Moot & Piazza 2001)

�P�z.((P someone), z) : (np ( s) ( ssomeone : (s " np) # s



Problems for lambda grammars



Using the missing universal link as 
a diagnostic

✤ Look at prototypical applications of the universal link.

✤ In some cases, such as Lambek formulas s/(np\s) and (n\n)/(s/
np), we can sidestep the absence of the universal link and make 
better predictions.

✤ Is this true for other cases?



ACG/lambda grammar problems

1. John deliberately hit Mary. (adverbs) 

2. John bought a sandwich and ran to the train. (VP coordination) 

3. John caught and ate a fish. (TV coordination) 

4. John loves but Mary hates Noam. (right-node raising) 

5. John bought himself a present. (reflexives) 

6. John gave himself and every/a pretty girl a present. 

7. John studies logic and Charles, phonetics. (gapping)

8. John left before Mary did. (ellipsis)  



Are these really problems?

✤ These are problems according to the exact same standards as medial 
extraction is a problem for the Lambek calculus.

✤ Hence, saying the the ACG/lambda grammar treatment of extraction 
is superior to the Lambek calculus treatment, means admitting other 
type-logical grammars have a superior treatment for many other 
phenomena (unless we want to evaluate ACG/lambda grammars to 
lower standards than we apply to other formalisms)



Are these new problems?

✤ A move to [lambda grammar] representations […] does not seem to 
be compatible with this analysis [of coordination] (Muskens, 2001)

✤ [with respect to adverbs] Some extra machinery therefore needs to be 
developed in order to get a grammar in Curry’s spirit working 
(Muskens, 2010, p.130).

✤ Lambek categorial grammars essentially fail to deal with medial gaps. 
[…] This is a direct consequence of the attempt to regulate word order 
on the level of the type system. In fact, a lot of research carried out 
within the Lambek paradigm can be seen as the invention of a series 
of epicycles needed to counter this architectural mistake. (Muskens, 
2010, p.131)



Adverbs

(np\s)/(np\s)

(8c.np(c, 2) ( s(c,D)) ( np(E, 1) ( s(E,D)

Lambek

MILL1

1. John deliberately hit Mary.

2 ! 1 0 ((2 ! c) ! D ! c) ! (1 ! E) ! D ! E



Enumerating lexical entries

✤ For the Lambek calculus, we could enumerate all possible syntactic 
types given a deep structure type simply by choosing “/” or “\” for 
each of the implications.

✤ For lambda grammars, we obtain a prosodic type from the deep 
structure type and can enumerate all (linear) lambda terms using 
inhabitation machines (van Benthem was the first to use these in the 
context of categorial grammars for enumerating possible semantic 
terms).



Inhabitation machine for the 
adverb

((� ! �) ! � ! �) ! (� ! �) ! � ! �

�

�VP(�!�)!�!�NP�!�z�

d NP

zV P y

� ! �

�y�

Figure 13: Inhabitation machine for an adverb type.

linear logic formula, even when using Skolemization, but we needed to exclude
an “obvious” translation candidate from the typing perspective).

The lambda grammar syntactic type (s|np)|(s|np) translates to the prosodic
type ((� ! �) ! � ! �) ! (� ! �) ! � ! � and produces the inhabitation
machine shown in Figure 13. We use the variable d (of type � ! �) to stand
for the occurrence of the string “deliberately”. We can see that the VP node
in the figure requires first an argument of type � ! � (the downward arrow)
then an argument of type � (the upward arrow) to produce a term of type �.
Valid linear paths through the machine must pass each term label exactly once,
and must pass the �y-label (on the curved arrow upwards to �) before the y
variable.

Figure 14 spits the � node in two, making the scope of the y variable clearer.
The word order of the sentence constrains the paths we can take. We must

take an NP arc before we take a d arc, since “deliberately” occurs after the
subject noun phrase. So from the top � node, we can only take three possible
paths, as shown below.21 For comparison, the uninhabited type corresponding
most closely to the first-order formula is shown as item 4. We can see that the
three other types are obtained by replacing the c constant by a C variable and
exchanging one of the occurrences of C with another atomic type in such a way
that the resulting type is inhabited. Seen from first-order linear logic, each of
the three possibilities has the translation of the Lambek calculus adverb formula
as a special case (though none are equivalent to it).

21These are not, as one referee remarked, “random lambda terms” but rather they exhaust
the lambda terms which produce the correct word order and semantics for the adverb. The
preferred term in the lambda grammar literature appears to be item (1) which can be found
in (Kanazawa & Pogodalla 2009, de Groote & Winter 2015).
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Adverbs

a)�VP�NP�z.NP (d ((VP �y.y) z)) :

((C ! C) ! D ! 2) ! (1 ! E) ! D ! E

b)�VP�NP�z.NP ((VP �y.d y) z) :

((2 ! 1) ! D ! C) ! (C ! E) ! D ! E

c)�VP�NP�z.((VP �y.NP (d y)) z) :

((2 ! C) ! D ! E) ! (1 ! C) ! D ! E

((2 ! c) ! D ! c) ! (1 ! E) ! D ! E

The candidate corresponding to the Lambek formula is uninhabited. However, we can try to 
approximate it, we can enumerate all possible lambda-terms for the given “deep structure” 
type and keep only those which can generate the correct word order. (We can use 
inhabitation machine, which have been used for categorial grammars at least since (van 
Benthem 1991)


1. John deliberately hit Mary.



Adverbs

a)�VP�NP�z.NP (d ((VP �y.y) z)) :

((C ! C) ! D ! 2) ! (1 ! E) ! D ! E

John np(0, 1)
deliberately (np(C,C) ( s(2, D)) ( np(E, 1) ( s(E,D)

hit np(A, 2) ( np(3, B) ( s(A,B)
Mary np(3, 4)

1. John deliberately Mary hit.

2. John deliberately Mary claims likes Susan. 

3. John deliberately Mary hit the sister of. 

What does this mean? It means an adverb first selects a sentence 
missing an NP *anywhere*, then a noun phrase juste before it which will 
be the subject *semantically*.



Adverbs

1. Mary John hit deliberately. 

2. Mary the friend of deliberately left. 

3. Mary John gave the friend of deliberately a book. 

John np(0, 1)
deliberately (np(2, 1) ( s(C,D)) ( np(E,C) ( s(E,D)

hit np(A, 2) ( np(3, B) ( s(A,B)
Mary np(3, 4)

b)�VP�NP�z.NP ((VP �y.d y) z) :

((2 ! 1) ! D ! C) ! (C ! E) ! D ! E

“deliberately” occupies an NP position (already a bit strange!) to form an S, we 

This could be an extraposition sentence, but it is very 
strange to have an *adverb* license extraposition


Meaning: tt was deliberate *on the part of Mary* that John 
hit her



Adverbs

1. John hit Mary deliberately. 

2. The friend of Mary deliberately left.

3. The friend of Mary deliberately who lives in Paris left. 

John np(0, 1)
deliberately (np(C, 2) ( s(E,D)) ( np(C, 1) ( s(E,D)

hit np(A, 2) ( np(3, B) ( s(A,B)
Mary np(3, 4)

c)�VP�NP�z.((VP �y.NP (d y)) z) :

((2 ! C) ! D ! E) ! (1 ! C) ! D ! E

“deliberately” is a sort of noun postmodifier: it can occur 
after any noun and the noun it modifiers will do things 
deliberately



Adverbs

✤ The best approximations that we can obtain all suffer from 
overgeneration because non-commutativity is insufficiently 
enforced.

✤ Can we work around the problem using additional lexical entries?

✤ We can add many new lexical entries, by optionally replacing all 
occurrences of np\s by a new atomic formula, say vp.

✤ Apart from the ad hoc nature of this solution, we would essentially 
double the number of lexical entries for adverbs, verbs and 
prepositions - which already have a high number of formulas - for 
a single type of example. And many more will follow...



Coordination

4. John caught and ate a fish.

�TV2.�TV1.�NP2.�NP1.�z.

NP1 ((TV1�x.x�y.y)(and ((TV2�v.v �w.w)(NP2 z))))

(np ! np ! s) ! (np ! np ! s) ! np ! np ! s

“and” is a transitive verb conjunction; 
we can reject many of the possible surface structure lambda-terms 
directly (eg. NP as argument of TV or the string “and” spanning an 
NP position) for reasons similar to the adverb case. However, there is a 
new type of term, which looks superficially correct.



Coordination

a1 = (np ! np ! s) ! (np ! np ! s) ! np ! np ! s

a2 = (np ! np ! s) ! np ! np ! s

John
np

caught
np ! np ! s

and
a1

ate
np ! np ! s

a2
np ! np ! s

a fish
np

np ! s
s

(((and a) c) f) j



Coordination

a1 = (np ! np ! s) ! (np ! np ! s) ! np ! np ! s

a2 = (np ! np ! s) ! np ! np ! s

John
np

caught
np ! np ! s

and
a1

x
[np]1

ate
np ! np ! s

y

[np]2

np ! s
s

np ! s I1
np ! np ! s I2

a2
np ! np ! s

a fish
np

np ! s
s

((and�y.�x.((a y)x) c) f) j



Coordination

John
np

caught
np ! np ! s

and
a1

x
[np]1

ate
np ! np ! s

y

[np]2

np ! s
s

np ! s I2
np ! np ! s I1

a2
np ! np ! s

a fish
np

np ! s
s

(((and�x.�y.((ay)x) c) f) j = (((and (Ca)) c) f) j

As observed by Kubota & Levine (2013), this produces 
“John caught and ate a fish” 

with semantics “John caught a fish and a fish ate John”



Coordination

✤ Again, non-commutativity is insufficiently enforced, but this time 
in the form of strange semantics.

✤ The problem is that we want to say that “and” takes two transitive 
verb arguments, whereas we can only say it takes two sentences 
each missing two noun phrases (with no restriction as to where they 
are missing).

✤ Adding a new atomic lexical entry (say tv), is again not an 
attractive option, since we would need many additional entries to 
handle cases like “John has understood and will probably 
implement Dijkstra's algorithm” (no extra work is needed in the 
Lambek calculus for examples of this kind) 



Gapping

7. John studies logic and Charles, phonetics.

�STV2.�STV1.�TV.�z.((STV1TV)

(and (STV2�O2�S2�y.S2 (O2 y)) z))

⌘⌘

�STV2.�STV1.�TV.�z.((STV1�O1�S1�x.(((TV�w.O1w)�v.S1 v))x)

(and (STV2�O2�S2�y.S2 (O2 y)) z))

((np ! np ! s) ! s) ! ((np ! np ! s) ! s) ! (np ! np ! s) ! s

“and” takes two sentences missing a transitive 
verb, then a transitive verb to form a sentence, 
and it does so by “plugging” the transitive verb 
into the leftmost sentence missing a transitive 
verb



Gapping

b1 = ((np ! np ! s) ! s) ! ((np ! np ! s) ! s) ! (np ! np ! s) ! s

b2 = ((np ! np ! s) ! s) ! (np ! np ! s) ! s

John
np

P
[np ! np ! s]1

logic
np

np ! s
s

(np ! np ! s) ! s
I1

and
b1

Charles
np

Q

[np ! np ! s]2
phonetics

np
np ! s

s
(np ! np ! s) ! s

I2

b2

(np ! np ! s) ! s
studies

np ! np ! s
s

(((and �Q.((Qp) c))�P.((P l) j)) s)



Gapping

b1 = ((np ! np ! s) ! s) ! ((np ! np ! s) ! s) ! (np ! np ! s) ! s

b2 = ((np ! np ! s) ! s) ! (np ! np ! s) ! s

John
np

P
[np ! np ! s]1

logic
np

np ! s
s

(np ! np ! s) ! s
I1

and
b1

Charles
np

Q

[np ! np ! s]2
phonetics

np
np ! s

s
(np ! np ! s) ! s

I2

b2

(np ! np ! s) ! s

x
[np]3

studies
np ! np ! s

y

[np]4

np ! s
s

np ! s I3
np ! np ! s I4

s

(((and �Q.((Qp) c))�P.((P l) j))�x.�y.((s x) y))



Gapping

logic
np

P
[np ! np ! s]1

John
np

np ! s
s

(np ! np ! s) ! s
I1

and
b1

Charles
np

Q

[np ! np ! s]2
phonetics

np
np ! s

s
(np ! np ! s) ! s

I2

b2

(np ! np ! s) ! s

x
[np]3

studies
np ! np ! s

y

[np]4

np ! s
s

np ! s I4
np ! np ! s I3

s

(((and �Q.((Qp) c))�P.((P j) l))�x.�y.((s y)x))

“John studies logic and Charles phonetics” with meaning
“John studies logic and phonetics studies Charles”



Solutions?

✤ Abandon type-logical deep structure and/or restrict the field of 
application of ACGs

✤ Hold lambda grammars to lower standards of adequacy than Lambek 
grammars

✤ Extend the formalism



Extending lambda grammars



The Lambek calculus 
and its extensions

AB L

MMCG

MILL1

LG

CCG

D

λG

hybrid



Lambda grammars and variants/
extensions

AB L hybrid

ACGTA

MILL1

ACGDep

Linear

λG



Extensions of lambda grammars

✤ ACGTA: add tree automata (Kanazawa)

✤ Linear grammar: add subtyping and term constraints 
“phenomenators” (Worth & Pollard)

✤ Hybrid type-logical grammars: add Lambek calculus connectives 
(Kubota & Levine)

✤ ACGDep: add dependent types/terms (Pogodalla & Pompigne)

✤ First-order linear logic: add missing rules for introduction of the 
universal quantifier and elimination of the existential quantifier 
(Moot & Piazza)



A brief comparison of the 
extensions

Solves problems Reasonable
Complexity

Too powerful

ACGTA no no? no

Linear yes no? ?

Hybrid yes? yes no

Dependent yes no? probably

First-order yes yes no



Standard architecture

MILL

deep structure

string

surface structure

formula

logical form

simply typed
λ-calculus

simply typed
λ-calculus



Dependent types

MILL

deep structure

string

surface structure

formula

logical form

simply typed
λ-calculus

simply typed
λ-calculus

Dependent 
types

forgetful map



First-order linear logic

MILL

deep structure

string

surface structure

formula

logical form

simply typed
λ-calculus

simply typed
λ-calculus

MILL1

forgetful map



First-order linear logic

MILL

deep structure

formula

logical form

simply typed
λ-calculus

MILL1

forgetful map



First-order linear logic

formula

logical form

dependent types
MILL1



Conclusions



Open Questions

✤ Are there other extensions of lambda grammars which solve the 
problems without increasing the complexity?

✤ What are the relations of all these different logics to each other?

✤ Are there more empirical data for which these different formalisms 
differ in their predictions, and help us choose between them?

✤ What about formal language theory? We know almost no upper 
bounds for extended Lambek calculi, since the methodology of the 
Pentus proof does not extend to more complicated logics.



Conclusions

✤ One of the measures of the success of a theory is the number of its 
purported successors. In this sense the lambda grammar framework 
developed by Oehrle and others has been immensely successful.

✤ A number of potential solutions to the problems with lambda 
grammars has been proposed. I believe first-order linear logic is a 
good candidate for the underlying “machine language” of many 
grammatical logics.

✤ First-order linear logic is a natural logical extension of lambda 
grammars. Moreover it conveniently allows to to mix-and-match 
existing analyses from lambda grammars, hybrid type-logical 
grammars and the Displacement calculus.
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Why ACGTA (Kanazawa, 2015) is 
not a solution

✤ ACGTA suffers from overgeneration; notably it does not actually solve 
the problems it set out to solve

✤ ACGTA suffers from undergeneration, even for linguistically relevant 
examples

✤ ACGTA does not provide a treatment of discontinuous gapping which 
is superior to other type-logical grammars (eg. Kubota & Levine)



Overgeneration

1. Terry hates and Leslie likes Robin (right-node-raising)

2. What did Peter buy last week and throw away yesterday? (across-
the-board extraction) 

3. I wonder which song Peter composed yesterday and Susan sang 
today. (across-the-board extraction)



Overgeneration

1. Terry hates and Leslie likes Robin (right-node-raising)

2. What did Peter buy last week and throw away yesterday? (across-
the-board extraction) 

Problem: the lexical assignments required for 2) and 3) have as
an immediate consequence that 1) is predicted to have a reading
meaning “Terry hates Robin and Robin likes Leslie”
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Figure 3: Part of the term for “Captain Jack served lobster yesterday and
bananafish today”.
.

However, the translation of Kanazawa produces the term shown in Figure 3
(slightly abbreviated), which is not accepted by the tree automaton: the ex-
pression (✏L1 + lobster) produces ✏L1 but then (✏L1 + ✏L1) is rejected by the
automaton.

In addition, the standard assignment to adverb modifiers such as “very”,
with assignment ((np\s)\(np\s))/((np\s)\(np\s)) as used in the example below,
poses a similar problem.

(10) Harry slipped into the mansion very discreetly.

AB grammars have no problems with the example above. However, the transla-
tion two ACGs produces the term shown in Figure 4 (again, slightly abbreviated)
for this derivation (Kanazawa 2015, p. 15 has a very similar term).

6.3 Gapping

Kanazawa (2015, p. 58) expresses puzzlement that the gapping account of Kub-
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FAILS

✏L1 + (✏L1 + lobster)
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Figure 4: Part of the term for “Harry slipped into the mansion very discreetly”.
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Gapping

1. *John met the vice-president of IBM and Betsy [met the vice-
president of] Xerox. (problem for all analyses I know)

2. *John met the vice-president of IBM in France and [John met the vice-
president of] Xerox [in] Italy. (problem for Kanazawa but not for 
others)

3. *John introduced the vice-president of IBM to the chairman of Xerox 
and [John introduced the vice-president of] Microsoft [the chairman 
of] Apple. (problem for Kanazawa but not for others)


