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A TALE OF
TWO THEORIES OF MEANING

e Translate words to vectors

e Translate words to formulas



VECTOR BASED
ENTAILMENT

entail / contradict/unknown

Deep learning

More deep
learning

Deep learning

Py x ~ T

John went to Paris by car and Bill by train Bill went to Paris by train



LoGgIC BASED
ENTAILMENT

Theorem prover

fidle |2 Fl E2 el

F1 = Je. went_to_by(e,John,Paris) & by(e,car) &
3f. went_to(f,Bill, Paris) & by(f,train) F2 = 3d.went_to(d,Bill,Paris) & by(d

TLG theorem TLG theorem

prover prover

np (np\s)/pp pp/np np (np\s)/pp pp/np
John went to Paris by car and Bill by train Bill went to Paris by train



ENTAILMENT EXAMPLE
(FROM FRACAS)

John spoke to Mary on Monday.

Bill didn’t.

5@ Bill didn’t speak to Mary on Monday.



ENTAILMENT EXAMPLE
(FROM FRACAS)

Il John went to Paris by car and Bill by train.

5@ Bill went to Paris by train.



ENTAILMENT EXAMPLE
(FROM RTE)

Eating lots of foods that are a good source of
Il fiber may keep your blood glucose from
rising fast after you eat.

IS8 Fiber improves blood sugar control.



QUESTION ANSWERING EXAMPLE
(FROM RACE)

“Here’s a letter for Miss Alice Brown,” said the mailman.
“I'm Alice Brown,” a girl of about 18 said in a low voice.
Alice looked at the envelope for a minute, and then handed

it back to the mailman.
“I'm sorry I can’t take it, I don’t have enough money to pay

it”, she said.
The girl handed the letter back to the mailman because

he didn’t know whose letter it was

he had no money to pay the postage

he received the letter but she didn’t want to open it

he had already known what was written in the letter




QUESTION ANSWERING EXAMPLE
(FROM SQUAD)

In meteorology, precipitation is any product

of the condensation of atmospheric water
vapor that falls under gravity.

ON What causes precipitation to fall?

R S




IS THERE STILL A PLACE
FOR LOGIC?

e There have been enormous advances on
the state-of-the art for many hard

natural language understanding tasks
(XLnet: 86.3 RTE, 98.6 QNLI)

e [s there still a place for logic?



IS THERE STILL A PLACE
FOR LOGIC?

* Human annotators are notoriously bad
at logical inferences.

e Jdeally, we want an inference system
which does logic at the level of our best
theorem provers and common sense
reasoning at the level of humans.



WHEN TO USE MACHINE
LEARNING?

e We don’t understand what’s going on
(eg. describing what is on a picture)

e We do understand, but there is no
feasible algorithm (eg. chess, go)



TYPE-LOGICAL GRAMMAR

e ) C )
Syntax T ( Semantics
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tive linear 8 | 1ambda term
logic proof
lexical sub-
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normalization
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CATEGORIAL GRAMMARS

Formulas and corresponding expressions

np
n

S

np\s
np/n
(np\s)/np

Jean, I’étudiant, ...
étudiant, économie, ...
Jean dort, Jean aime Marie
dort, aime Marie

un, chaque, I

aime, étudie



CATEGORIAL GRAMMARS

Lambek categorial
grammars have only
four rules: an
elimination and an

introduction rule for
bOth //\// and /////

Rules

B\ A

[\E]




CATEGORIAL GRAMMARS

Example

un étudiant dort

np/n n np\s [/E] - [\E]
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CATEGORIAL GRAMMARS

Example

un étudiant

np/n n dort [/E] [\E]
- [/E] A A

np np\s

[/E]
S




LAMBEK GRAMMARS
AND BEYOND

e getting the semantics right requires a
somewhat richer system than AB
grammars

e introduction rules (“traces” or the original
“slash categories” and their semantics)

e structural rules (“movement” or “head
wrap”, essentially restricted tree rewrite
operations)



INTRODUCTION RULES:

EXAMPLE
SENT
VN NP-OBJ
On regrettera DET NC Srel
cette rédaction NP-OBJ VN ADV

P ey |

PROREL CLS-SUJ V VPP ensemble

qu on a créée




INTRODUCTION RULES:
EXAMPLE

redaction qu’ on a créée
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INTRODUCTION RULES:
EXAMPLE

redaction qu’ on a créée
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INTRODUCTION RULES:

EXAMPLE
redaction qu’ on créée
n  (n\n)/(s/np) TP a (np\Sppart)/ NP 1P
(np\ s) / (Hp \ Sppart) np\ Sppart

/E
= [/E]



INTRODUCTION RULES:

EXAMPLE
redaction qu’ créée
n  (n\n)/(s/np) a (p\sppat)/np  HEE
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INTRODUCTION RULES:

redaction qu’

n

(n\n)/(s/np)

EXAMPLE
créée
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INTRODUCTION RULES:

EXAMPLE
redaction créée
n d (np\sppart)/np  [np]!
on (np\ S) / (ﬂp \ Sppart) np\ Sppart [/E]
’ np np\s B [/
qu S

/1)1
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[/E]
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INTRODUCTION RULES:

EXAMPLE
créée
a (Ilp \ Sppart)/ np [np]l
on (np\s)/(np\sppart) np \ Sppart [/E] L/E]
, - I [\E]
qu S ;
redaction (n\n)/(s/np) s/np [[ //IIE]]
n n\n




LAMBDA CALCULUS AND
PROOFS AS TERMS

t:A /B uwB uB t:-B\ A

* Proofs in categorial

grammar correspond (tu):A (tu):A
to lambda terms
e These lambda terms B .
"forget" the .
directions of the : :
tA t:A

implications.

A/B:Ax.t B\ A:Ax.t



WHY PARSING IS
IMPORTANT



WHY PARSING IS
IMPORTANT

e Killer sentenced to die for second time
in 10 years.

e Enraged cow injures farmer with axe

e Top stories: ... Obama-Castro
handshake and same-sex marriage date

set
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WHY PARSING IS
IMPORTANT

e Killer sentenced to die for second time
in 10 years.
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WHY PARSING IS
IMPORTANT

e Killer sentenced to [die for second time
in 10 years].

e Enraged cow [[injures farmer] with axe]

e Top stories: ... Obama-Castro
[[handshake and same-sex marriage]
date set]



WHY PARSING IS
IMPORTANT

e Killer [sentenced to die] for second time
in 10 years.

e Enraged cow injures [farmer with axe]

e Top stories: ... [Obama-Castro
handshake] and [same-sex marriage
date set]



TYPE-LOGICAL GRAMMAR
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Syntax T ( Semantics
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WHERE COULD MACHINE
LEARNING BE USEFUL?

e Assigning formulas to word
(supertagging)
e Choosing the “best” proof among

alternatives

e Computing entailments in the target
logic (reinforcement learning)



WIDE-COVERAGE PARSING

e How can we parse arbitrary text with
type-logical grammars?

e Before we can even start, we need a
sufficiently large lexicon.

e How can we assign a formula to a word
we have never seen with this formula?

Maybe we have never seen the word at
all.



WIDE-COVERAGE PARSING

e No good theoretical model of the
“right” formula for the words in a
sentence.

e Maybe a case for machine learning?

e However, we need a fair amount of
data



TREEBANK EXTRACTION

Sentence as we find it in the
corpus. “dont” is a relative
pronoun like “que” but which
selects a sentence missing de
“de” preposition (instead of a
sentence missing an np like
“que”)

e

DET Srel
| | de—oM \ ats
la monnaie PP VN AP
| AN |
PRO|REL CLS|—SUJ \|/ A]|)J
dont elle est responsable

Note how “dont” is annotated as
a “de-obj” argument, which is
useful.

la NlC / Sllrel
de-obj
monnaie PP CLS-SUJ VN
| | /" \ ats
PROREL elle A% AP

| | |

dont est ADIJ

responsable



TREEBANK EXTRACTION

However, the “de” preposition belongs to
“responsable” (some adjectives select for
prepositions: “responsable de X” functions as an
adjective just as “responsable”)

NP Remark however, that there is no way to derive
/ \ this from the annotation as it is given. Manual
intervention (or at least verification!) is
DET NC unfortunately necessary to assure the correct
| / \ placement of the hypothetical preposition.
la NC Srel
monnaie PROREL Srel
dont CLS-SUJ VN

| / \ ats
A

elle \Y% P
| i
est ADJ PP-DE

responsable €



TREEBANK EXTRACTION
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TREEBANK EXTRACTION

//np\
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TREEBANK EXTRACTION
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TREEBANK EXTRACTION
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TREEBANK EXTRACTION
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TREEBANK EXTRACTION
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TREEBANK EXTRACTION
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STATISTICS ABOUT THE
EXTRACTED FRENCH TREEBANK

e 15,590 sentences 445,918 words = oo -
e 43 (098 distinct lexical entries
e 859 different formulas

By comparison: 12,617 CFG rules

Question: can we actually use the extracted grammar
for parsing?



LEXICON SIZE

eSkE= S5

(np\s)/np 23,2

e Many frequent. (np\s)/(n\n) 20,6 %
L (cl:\ (np\s))/ (cl:\ (np\ sppart)) | 10,8 %
(np\s)/pp 8,1 %

e (lassic sol.ution: (np\ )/ (P \ Sppart) 6,3 %
supertagging plslioe 289

(np\s)/sq)/(n\n) 2,2 %



WHAT SUPERTAGGING DOES

hpiisEiini
N NS pp/pp_de
nffl] (np\s)/ [ ( (np\s_injl] (np\s_in (e icatin (s\ e) /i e deiaas

leur permettre el emprunter aupres de

* Supertagging = statistical approximation of
lexical lookup

e Assigns each word the contextually most
likely (set of) formulas



MINIMAL FUSION

Word to vector then vector to formula
But which vectors?



WHAT DO WE USE AS
INPUTS TO OUR MODELS?

e represent each word by a fixed-length
vector

® vector representation must contain
enough information for downstream
tasks



MODEL INPUTS:
NO EMBEDDING

last two letters

are "ue' =
word = "rue



MODEL INPUTS:
WORD-BASED EMBEDDING

embedding
similar to
“boulevard”’ and
“avenue"

last two letters
are 'ue"

e | 1 0.01 | 0.09 |-0.31] 0.06

preﬁx Nfﬁx \ / word embeddmg

Using word embeddings alleviates but does
not solve the unknown word problem. "
Therefore it’s probably a good idea to include
features as backup for unknown words
(although we can try how well things work
without)




MODEL INPUTS:
CHARACTER-BASED EMBEDDING

embedding

similar to

“boulevard’’ and
“avenue'

Useful information about morphology
etc. is coded in the vector even for
unknown words

0.01 | 0.09 |-0.31] 0.06

/word embedding

1/ "

ruae



VECTOR MODELS

Context-based: word representation
depends on context words in the
input sentence (not globally in the
corpus). “Un avocat mange un
avocat”

word2vec | fastText ELMo BERT XLnet

word based character based

For all character based models, there is a
separate neural network which computes

independent of context context based PEEREEEEIE

Since these models are typically pre-trained
on much larger datasets that your corpus, it
is usually better to use one of these pre-
trained models than to use character-based
inputs to your models yourself.
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LSTM TAGGING/
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LSTM TAGGING/
SUPERTAGGING

# input layers are the standard (averaged) ELMo output layer
sentence_embeddings = Input(shape = (None,embLen,), dtype = 'float32')
mask = Masking(mask_value=0.0) (sentence_embeddings)

X = Dropout(0.5) (mask)

# first bi-directional LSTM layer

X = Bidirectional(LSTM(128, recurrent_dropout=0.2, kernel_constraint=max_norm(mxn), return_sequences=True)) (X2
<)

X = BatchNormalization() (X)

X = Dropout(dropout_value) (X)

# Posl output

Pos1l = TimeDistributed(Dense(32,kernel_constraint=max_norm(mxn))) (X)

Pos1l = TimeDistributed(Dropout(dropout_value)) (Posl)

posl output = TimeDistributed(Dense(numPos1Classes, name='posl_output', activation='softmax',kernel_constraina
& t=max_norm(mxn))) (Pos1)

# Pos2 output

Pos2 = TimeDistributed(Dense(32,kernel_constraint=max_norm(mxn))) (X)

Pos2 = TimeDistributed(Dropout(dropout_value)) (Pos2)

pos2_output = TimeDistributed(Dense(numPos2Classes, name='pos2_output', activation='softmax',kernel_constraina
& t=max_norm(mxn))) (Pos2)

# second bi-directional LSTM layer

X = Bidirectional(LSTM(128, recurrent_dropout=dropout_value, kernel_constraint=max_norm(mxn), return_sequence#
@s=True)) (X)

X = BatchNormalization() (X)

I = Dropout(dropout_value) (X)

# supertag output

X = TimeDistributed(Dense(32, kernel_constraint=max_norm(mxn))) (X)
X = TimeDistributed(Dropout(dropout_value)) (X)

super_output = TimeDistributed(Dense(numSuperClasses, name='super_output', activation='softmax', kernel_consti
& raint=max_norm(mxn))) (X)

model = Model(sentence_embeddings, [posl_output,pos2_output,super_outputl])



L

(None. None, 1024)

(None. None, 1024)

(None, None, 1024)

(None, None. 1024)

(None, None, 1024)

(None, None, 1024)

input: (None, None, 1024)

bidirectional _I(Istm_1): Bidi

output: (None, None, 256)

batch

input: (None, None, 256)

output: | (None, None, 256)

(None, None, 256)

(None, None, 256)

input: (None, None, 256) input: | (None, None, 256) input: (None, None, 256)
|_2(Istm_2): Bidirecti LSTM) time_ |_l(dense_l): TimeDistributed(Dense ) time_distributed_4(dense_2): Time Distributed(Dense)
output: | (None, None, 256) output: | (None, None, 32) output: | (None, None, 32)
A
input: | (None, None, 256) input: | (None, None, 32) input: | (None, None, 32)
batch_ ization_2: time_ _3): TimeDistributed(Dropout) time_distributed_5(dropout_4): TimeDistributed(Dropout)
output: | (None, None, 256) output: | (None, None, 32) output: | (None, None, 32)
y
input: | (None, None, 256) input: | (None, None, 32) input: | (None, None, 32)
dropout_5: Dropout time_distributed_3(posI_output): Time Distributed(Dense) time_distributed_6(pos2_output): TimeDistributed(Dense)
output: | (None, None,256) output: | (None, None. 30) output: | (None, None, 32)

input: (None, None, 256)
time_distributed_7(dense_3): TimeDistributed(Dense )

(None, None, 32)

(None, None, 32)

time_distributed_8(dropout_6): TimeDistributed(Dropout)

(None, None, 32)

(None, None, 32)

time_distributed_9(super_output): TimeDistributed(Dense)

(None, None, 891)
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SUPERTAGGER
PERFORMANCE (MAXENT)

O78% | 90,6 % | 9647, |98 44 255

Le Monde 2010 9785 % 1:89,9 % | 95,8 % | oo 2.2

Sequoia/Annodis| 97,3% | 88,1% | 948 % | 97,6 % 2

Itipy / Forbes 957 90.1-.86,7 7 |- 93,8 7 B O 2,6



HOw GOOD IS THIS?

e 90.6% accuracy for the best supertag
sounds good, but this is given the
correct part-of-speech tag

e When combining POS-tagger with
supertagger, accuracy drops to 88.7%

(without POS-tagger, we end up at
86.7%, so POS-tagging helps)



SUPERTAGGER

PERFORMANCE
MaxEnt 0,6 |96,4(1,4)]98,4(23)|98,8 (4,7)
LSTM 98,4 92,2 95,8 (1,2)|97,9 (1,5)99,0 (2,4)

LSTM+ELMo 99,1 93,2 97,6 (1,1)198,6 (1,5) 995G

with f=0,0003, we have 4,6 formulas per word
(same as ME with =0,001) but accuracy of 99.5%



LSTM vs MAXENT
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.
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LSTM vs MAXENT

O Maxent LSTM+ELMO
10
<
9:%
|
6,8\
6
error
percentage
4
B
2 (24 <
Bt o W
A e oS —0
i)
0 07 05
1,0 2,0 3,0 4,0 5,0

average number of formulas per word



TAKING STOCK

* Vector representations improve
supertagger results.

e When our vector representations are
rich enough

1. we no longer need ad hoc features to
deal with unknown words

2. our results improve



MOVING VECTORS DEEPER
INTO OUR MODELS

e This is a somewhat superficial use of
vectors.

e Can vector representations help us
choose the “best” proof of a sentence?

e We need two components: a way of
composing vectors and a way of
evaluating how good vectors (or
combinations of vectors) are.



PROOF SEARCH IN
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PROOF SEARCH IN
NATURAL DEDUCTION

discovered
Galileo (np\s)/np
n np\s
which & S /]IQ \E
moons (n\n)/(s/np) s/np /E
n n\n

Y



NATURAL DEDUCTION
WITH VECTORS

mMoons which Galileo discovered

n (il n)/(s/np) np (np\s)/np

When the goal formula is atomic, we need to
select the focused formula and split the antecedent

Representing words as vectors and formulas as
vectors a neural network can learn these tasks

(Kogkalidis e.a. 2019)

This sidesteps the need for vector composition!



PARSING WITH
PROOF NETS

e Proof nets are graph-based proof
systems for linear logic and type-logical
grammars

e They represent the combinatorics of the
search space of proofs in a way which is
neutral with respect to any proof search
strategy



PARSING WITH
PROOF NETS

A/B B B B\ A
/e N
| |
A A
A A
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EXAMPLE: "JOHN SAW
EVERYONE”

(np\s)/np s//(np\ s)

e

np




EXAMPLE: "JOHN SAW
EVERYONE”

e
np-

np



“DOG THAT MARY SAW
TODAY’’

S

A

Sl ) np
|
that %9 saw
L )t ) o\
n n\n np np\s s s{s

Y.

n np S S



PROPAGATING VECTORS
THROUGH PROOF NETS

e Specity propagation rules in a generic
form with a composition operation and
an identity element

e Allow certain lexical entries to override
default



PROPAGATING VECTORS
THROUGH PROOF NETS

e Specity propagation rules in a generic
form with a composition operation and
an identity element

e Allow certain lexical entries to override
default

* Let neural network learn propagation

which helps parsing best



BASELINE

e Baseline: composition is vector addition
(maybe averaged at the end)

e Identity element is zero vector



COMPOSITION =
NEURAL NET

Output
vector

Input vector1  Input vector 2

Socher, Lin, Ng & Manning (2011)



PARSING WITH
PROOF NETS

E N / \ B\/AW
\\]ow VoW o vector composition
0 identity

/ /‘\ /‘\\

VA/B B\A V
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PARSING WITH
PROOF NETS
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CONCLUSIONS

e We have seen several superficial ways
of incorporating vector representations
and deep learning into type-logical
grammars

e For the moment, only the supertagger
vectors have been evaluated; they result
in a cleaner, less ad hoc model and
improved performance



THE FUTURE

e We want to evaluate the use of vectors
into selecting the best proof and thereby
the best lambda term meaning

e Isit useful to incorporate vector
semantics for a fully semantic task (eg.
entailment) with type-logical
grammars?



