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A Tale of  
Two Theories of Meaning

• Translate words to vectors

• Translate words to formulas



Vector Based 
Entailment

John went to Paris by car and Bill by train Bill went to Paris by train

…… …

Deep learning More deep 
learning

Deep learning

entail/contradict/unknown



Logic Based 
Entailment

John went to Paris by car and Bill by train Bill went to Paris by train

TLG theorem 
prover

Theorem prover

np (np\s)/pp pp/np

F1 = ∃e. went_to_by(e,John,Paris) & by(e,car) &
∃f. went_to(f,Bill,Paris) & by(f,train) F2 = ∃d.went_to(d,Bill,Paris) & by(d,train)

TLG theorem 
prover

F1    F2

⏊

F1,F2
⏊

⏊

np (np\s)/pp pp/np



Entailment example 
(from FraCas)

John spoke to Mary on Monday.
Bill didn’t.

Bill didn’t speak to Mary on Monday.

T

H



Entailment example 
(from FraCas)

John went to Paris by car and Bill by train.

Bill went to Paris by train.

T

H



Entailment example 
(From RTE)

Eating lots of foods that are a good source of 
fiber may keep your blood glucose from 
rising fast after you eat.

Fiber improves blood sugar control.

T

H



Question Answering example 
(From RACE)

“Here’s a letter for Miss Alice Brown,” said the mailman. 
“ I’m Alice Brown,” a girl of about 18 said in a low voice. 
Alice looked at the envelope for a minute, and then handed 
it back to the mailman. 
“I’m sorry I can’t take it, I don’t have enough money to pay 
it”, she said.

The girl handed the letter back to the mailman because

T

she didn’t know whose letter it wasA1

she had no money to pay the postageA2

Q

she received the letter but she didn’t want to open it

she had already known what was written in the letter

A3

A4



Question Answering example 
(From SQuAD)

In meteorology, precipitation is any product 
of the condensation of atmospheric water 
vapor that falls under gravity. 

What causes precipitation to fall?

T

Q

GravityA



Is there Still a Place 
for Logic?

• There have been enormous advances on 
the state-of-the art for many hard 
natural language understanding tasks 
(XLnet: 86.3 RTE, 98.6 QNLI)

• Is there still a place for logic?



Is there Still a Place 
for Logic?

• Human annotators are notoriously bad 
at logical inferences.

• Ideally, we want an inference system 
which does logic at the level of our best 
theorem provers and common sense 
reasoning at the level of humans.



When To Use Machine 
Learning?

• We don’t understand what’s going on 
(eg. describing what is on a picture)

• We do understand, but there is no 
feasible algorithm (eg. chess, go)



Type-Logical Grammar

9 The Grail theorem prover: Type theory for syntax and semantics 3

A sentence w1, . . . ,wn is grammatical iff the statement A1, . . . ,An `C is provable
in our logic, for some Ai 2 lex(wi) and for some goal formula C. In other words, we
use the lexicon to map words to formulas and then ask the logic whether the result-
ing sequence of formulas is a theorem. Parsing in a type-logical grammar is quite
literally a form of theorem proving, a very pure realisation of the slogan “parsing as
deduction”.

One of the attractive aspects of type-logical grammars is their simple and trans-
parent syntax-semantics interface. Though there is a variety of logics used for the
syntax of type-logical grammars (I will discuss the Lambek calculus in Section 9.2.1
and two generalisations of it in Sections 9.3.1 and 9.3.2), there is a large consensus
over the syntax-semantics interface. Figure 9.1 gives a picture of the standard archi-
tecture of type-logical grammars.

Syntax Semantics
Pragmatics

input text

categorial
grammar proof

multiplica-
tive linear
logic proof

linear
lambda term

logical
semantics
(formulas)

semantics and
pragmatics

homomorphism

isomorphism

lexical sub-
stitution,

normalization

lexical substi-
tution, parsing

theorem
proving

Fig. 9.1 The standard architecture of type-logical grammars

The “bridge” between syntax and semantics in the figure is the Curry-Howard
isomorphism between linear lambda terms and proofs in multiplicative intuitionistic
linear logic.

Theorem proving occurs in two places of the picture: first when parsing a sen-
tence in a given type-logical grammar and also at the end when we use the resulting
semantics for inferences. I will have little to say about this second type of theorem
proving (Chatzikyriakidis, 2015; Mineshima et al, 2015, provide some investiga-
tions into this question, in a way which seems compatible with the syntax-semantics
interface pursued here, though developing a full integrated system combining these
systems with the current work would be an interesting research project); theorem
proving for parsing will be discussed in Section 9.4.

The lexicon plays the role of translating words to syntactic formulas but also
specifies the semantic term which is used to compute the semantics later. The lexi-
con of a categorial grammar is “semantically informed”. The desired semantics of a



• np

• n

• s

• np\s

• np/n

• (np\s)/np

• Jean, l’étudiant, …

• étudiant, économie, …

• Jean dort, Jean aime Marie

• dort, aime Marie

• un, chaque, l’

• aime, étudie

Categorial Grammars
Formulas and corresponding expressions



Categorial Grammars
Rules

A/B B
A

B\AB
A

[/E]

[B]i

A
B\A

…
[B]i

A
A/B

…
…

[/I]i

[\E]

[\I]i

…

Lambek categorial 
grammars have only 
four rules: an 
elimination and an 
introduction rule for 
both    “\” and “/”



A/B B
A

B\AB
A

[/E]

[B]i

A
B\A

…
[B]i

A
A/B

…
…

[/I]i

[\E]

[\I]i

…

np\snp/n
un

n
étudiant dort

Categorial Grammars
Example



A/B B
A

B\AB
A

[/E]

[B]i

A
B\A

…
[B]i

A
A/B

…
…

[/I]i

[\E]

[\I]i

…

np\snp/n
un

n
étudiant dort

[/E]
np

Categorial Grammars
Example



A/B B
A

B\AB
A

[/E]

[B]i

A
B\A

…
[B]i

A
A/B

…
…

[/I]i

[\E]

[\I]i

…

np\s
np/n

un

n
étudiant

dort
[/E]

np
[/E]

s

Categorial Grammars
Example



Lambek grammars  
and beyond

• getting the semantics right requires a 
somewhat richer system than AB 
grammars

• introduction rules (“traces” or the original 
“slash categories” and their semantics)

• structural rules (“movement” or “head 
wrap”, essentially restricted tree rewrite 
operations)



Introduction Rules: 
Example

SENT

PONCT

NP-ATS

des opportunistes qui virevoltent ...

ADV

pas

VN

V

sont

ADV

ne

“

Sint-MOD

PONCT

,

NP-SUJ

le premier ministre

VN

VPP

ajouté

V

a

PONCT

,

NP-SUJ

Les conservateurs

existants
n\n Lex

ou
((n\n)\(n\n))/(n\n) Lex

en cours...
n\n Lex

(n\n)\(n\n)
/E

n\n
\E

SENT

NP-OBJ

Srel

ADV

ensemble

VN

VPP

créée

V

a

CLS-SUJ

on

NP-OBJ

PROREL

qu’

NC

rédaction

DET

cette

VN

On regrettera

2



Introduction Rules: 
Example

(np\sppart)/np(np\s)/(np\sppart)
crééea

np
on

(n\n)/(s/np)

qu’
n

redaction
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(np\sppart)/np  np (np\s)/(np\sppart)
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np
on

(n\n)/(s/np)
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n
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Introduction Rules: 
Example

(np\sppart)/np  np 
np\sppart

(np\s)/(np\sppart) [/E]

crééea
np
on

(n\n)/(s/np)

qu’
n

redaction



Introduction Rules: 
Example

(np\sppart)/np  np 
np\sppart(np\s)/(np\sppart)

[/E]

[/E]
np\s

créée
anp

on
(n\n)/(s/np)

qu’
n

redaction



Introduction Rules: 
Example

(np\sppart)/np  np 
np\sppart(np\s)/(np\sppart)

[/E]

[/E]
np\s

créée
a

np
[\E]

s

on
(n\n)/(s/np)

qu’
n

redaction



Introduction Rules: 
Example

(np\sppart)/np [np]1

np\sppart(np\s)/(np\sppart)
[/E]

[/E]
np\s

créée
a

np
[\E]

s
s/np

[/I]1

on
(n\n)/(s/np)

qu’
n

redaction



Introduction Rules: 
Example

(np\sppart)/np [np]1

np\sppart(np\s)/(np\sppart) [/E]

[/E]np\s

créée
a

np
[\E]

s
s/np

[/I]1

on

(n\n)/(s/np)
[/E]

qu’

n\n

n

redaction



Introduction Rules: 
Example

(np\sppart)/np [np]1

np\sppart(np\s)/(np\sppart) [/E]
[/E]

np\s

créée
a

np
[\E]

s
s/np

[/I]1

on

(n\n)/(s/np)
[/E]

qu’

n\nn

redaction

n



Lambda Calculus and 
Proofs as terms

• Proofs in categorial 
grammar correspond 
to lambda terms

• These lambda terms 
"forget" the 
directions of the 
implications.

t:A/B u:B
(t u):A

t:B\Au:B
(t u):A

[x:B]

t:A
B\A:λx.t

…
[x:B]

t:A
A/B:λx.t

…



Why Parsing is 
Important



Why Parsing is 
Important

• Killer sentenced to die for second time 
in 10 years.

• Enraged cow injures farmer with axe

• Top stories: … Obama-Castro 
handshake and same-sex marriage date 
set



Why Parsing is 
Important

• Killer sentenced to die for second time 
in 10 years.
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Why Parsing is 
Important

• Killer sentenced to die for second time 
in 10 years.

np
(np\s)/(np/s)

np/s (np\s)\(np/s)
killer

sentenced_to
die for second…

np/s
np/s
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Why Parsing is 
Important

• Killer sentenced to die for second time 
in 10 years.

• Enraged cow injures farmer with axe

• Top stories: … Obama-Castro 
handshake and same-sex marriage date 
set



Why Parsing is 
Important

• Killer sentenced to [die for second time 
in 10 years].

• Enraged cow [[injures farmer] with axe]

• Top stories: … Obama-Castro 
[[handshake and same-sex marriage] 
date set]



Why Parsing is 
Important

• Killer [sentenced to die] for second time 
in 10 years.

• Enraged cow injures [farmer with axe]

• Top stories: … [Obama-Castro 
handshake] and [same-sex marriage 
date set]



Type-Logical Grammar

9 The Grail theorem prover: Type theory for syntax and semantics 3

A sentence w1, . . . ,wn is grammatical iff the statement A1, . . . ,An `C is provable
in our logic, for some Ai 2 lex(wi) and for some goal formula C. In other words, we
use the lexicon to map words to formulas and then ask the logic whether the result-
ing sequence of formulas is a theorem. Parsing in a type-logical grammar is quite
literally a form of theorem proving, a very pure realisation of the slogan “parsing as
deduction”.

One of the attractive aspects of type-logical grammars is their simple and trans-
parent syntax-semantics interface. Though there is a variety of logics used for the
syntax of type-logical grammars (I will discuss the Lambek calculus in Section 9.2.1
and two generalisations of it in Sections 9.3.1 and 9.3.2), there is a large consensus
over the syntax-semantics interface. Figure 9.1 gives a picture of the standard archi-
tecture of type-logical grammars.

Syntax Semantics
Pragmatics

input text

categorial
grammar proof

multiplica-
tive linear
logic proof

linear
lambda term

logical
semantics
(formulas)

semantics and
pragmatics

homomorphism

isomorphism

lexical sub-
stitution,

normalization

lexical substi-
tution, parsing

theorem
proving

Fig. 9.1 The standard architecture of type-logical grammars

The “bridge” between syntax and semantics in the figure is the Curry-Howard
isomorphism between linear lambda terms and proofs in multiplicative intuitionistic
linear logic.

Theorem proving occurs in two places of the picture: first when parsing a sen-
tence in a given type-logical grammar and also at the end when we use the resulting
semantics for inferences. I will have little to say about this second type of theorem
proving (Chatzikyriakidis, 2015; Mineshima et al, 2015, provide some investiga-
tions into this question, in a way which seems compatible with the syntax-semantics
interface pursued here, though developing a full integrated system combining these
systems with the current work would be an interesting research project); theorem
proving for parsing will be discussed in Section 9.4.

The lexicon plays the role of translating words to syntactic formulas but also
specifies the semantic term which is used to compute the semantics later. The lexi-
con of a categorial grammar is “semantically informed”. The desired semantics of a



Where Could Machine 
Learning Be Useful?

• Assigning formulas to word 
(supertagging)

• Choosing the “best” proof among 
alternatives

• Computing entailments in the target 
logic (reinforcement learning)



Wide-Coverage Parsing

• How can we parse arbitrary text with 
type-logical grammars?

• Before we can even start, we need a 
sufficiently large lexicon.

• How can we assign a formula to a word 
we have never seen with this formula? 
Maybe we have never seen the word at 
all.



Wide-Coverage Parsing

• No good theoretical model of the 
“right” formula for the words in a 
sentence.

• Maybe a case for machine learning?

• However, we need a fair amount of 
data



Treebank Extraction
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ats

ADJ

responsable
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Sentence as we find it in the 
corpus. “dont” is a relative 
pronoun like “que” but which 
selects a sentence missing de 
“de” preposition (instead of a 
sentence missing an np like 
“que”)

Note how “dont” is annotated as 
a “de-obj” argument, which is 
useful.



Treebank Extraction

NP

DET

la

NC

NC

monnaie

Srel

PROREL

dont

Srel

CLS-SUJ

elle

VN

V

est
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responsable

PP-DE

ε

np

DET

la

NC

NC

monnaie

Srel

PROREL

dont

Srel

CLS-SUJ

elle

VN

V

est

AP
ats

ADJ

responsable

PP-DE

ε

3

However, the “de” preposition belongs to 
“responsable” (some adjectives select for 
prepositions: “responsable de X” functions as an 
adjective just as “responsable”)


Remark however, that there is no way to derive 
this from the annotation as it is given. Manual 
intervention (or at least verification!) is 
unfortunately necessary to assure the correct 
placement of the hypothetical preposition.



Treebank Extraction
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Treebank Extraction
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Statistics About the 
Extracted French Treebank

• 15,590 sentences 445,918 words

• 43,098 distinct lexical entries 

• 859 different formulas

• By comparison: 12,617 CFG rules

Note: these are the statistics 
after considerable cleanup: the 
first version had over 4,000 
different formulas!

Question: can we actually use the extracted grammar
for parsing?



Lexicon Size

• Many frequent 
words occur with 
very many different 
formulas

• Classic solution: 
supertagging

(np\s)/np 23,2 %

(np\s)/(n\n) 20,6 %

(np\s)/(np\spass) 16,8 %

(clr\(np\s))/(clr\(np\sppart)) 10,8 %

(np\s)/pp 8,1 %

(np\s)/(np\sppart) 6,3 %

(np\s)/(np\sinfX) 2,8 %

((np\s)/sq)/(n\n) 2,2 %

est - “is”



What Supertagging Does

• Supertagging ≅ statistical approximation of 
lexical lookup

• Assigns each word the contextually most 
likely (set of) formulas

leur permettre d' emprunter auprès de

PRO:PER VER:infi PRP VER:infi PRP PRP

(np\s_inf (np\s)/ ((np\s_in (np\s_inf (np\s_inf

np\s_inf

(np\s_inf

(s\�s)/

pp/pp_de

pp_de/np



Minimal Fusion

Word to vector then vector to formula
But which vectors?



What do we use as 
inputs to our models?

• represent each word by a fixed-length 
vector

• vector representation must contain 
enough information for downstream 
tasks



Model Inputs: 
No Embedding

“rue"

0 1 0 1 …

first letter is "r"

0 0 0 1 … 0 0 1 0 …

last two letters
are "ue"

word = "rue"

prefix suffix



Model Inputs:  
Word-based Embedding

“rue"

0 1 0 1 …

first letter is "r"

0 0 0 1 … 0.01 0.09 -0.31 0.06 …

last two letters
are "ue"

embedding 
similar to 

“boulevard’' and
“avenue"

prefix suffix word embedding

Using word embeddings alleviates but does 
not solve the unknown word problem.


Therefore it’s probably a good idea to include 
features as backup for unknown words 
(although we can try how well things work 
without)



Model Inputs: 
Character-Based Embedding

“rue"

0.01 0.09 -0.31 0.06 …

embedding 
similar to 

“boulevard’' and
“avenue"

word embedding

Useful information about morphology 
etc. is coded in the vector even for 
unknown words



Vector Models

word2vec fastText ELMo BERT XLnet

word based character based

independent of context context based
For all character based models, there is a 
separate neural network which computes 
the embeddings


Since these models are typically pre-trained 
on much larger datasets that your corpus, it 
is usually better to use one of these pre-
trained models than to use character-based 
inputs to your models yourself.

Context-based: word representation 
depends on context words in the 
input sentence (not globally in the 
corpus). “Un avocat mange un 
avocat” 



LSTM Tagging/
Supertagging

le chat dort
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np/n n np\s



LSTM Tagging/
Supertagging



The full 
model has
1,632,057 
trainable 
parameters



Supertagger 
Performance (MaxEnt)

Corpus POS Super 0,1 0,01 F/w

FTB 97,8 % 90,6 % 96,4 % 98,4 % 2,3



Supertagger 
Performance (MaxEnt)

Corpus POS Super 0,1 0,01 F/w

FTB 97,8 % 90,6 % 96,4 % 98,4 % 2,3

Le Monde 2010 97,3 % 89,9 % 95,8 % 97,9 % 2,2

Sequoia/Annodis 97,3 % 88,1 % 94,8 % 97,6 % 2,4

Itipy/Forbes 95,7 % 86,7 % 93,8 % 97,1 % 2,6



How good is this?

• 90.6% accuracy for the best supertag 
sounds good, but this is given the 
correct part-of-speech tag

• When combining POS-tagger with 
supertagger, accuracy drops to 88.7% 
(without POS-tagger, we end up at 
86.7%, so POS-tagging helps)



Supertagger 
Performance

Corpus POS Super 0,1 0,01 0,001

MaxEnt 97,8 90,6 96,4 (1,4) 98,4 (2,3) 98,8 (4,7)

LSTM 98,4 92,2 95,8 (1,2) 97,9 (1,5) 99,0 (2,4)

LSTM+ELMo 99,1 93,2 97,6 (1,1) 98,6 (1,5) 99,3 (3,0)

with β=0,0003, we have 4,6 formulas per word 
(same as ME with β=0,001) but accuracy of 99.5%
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Taking stock

• Vector representations improve 
supertagger results.

• When our vector representations are 
rich enough

1. we no longer need ad hoc features to 
deal with unknown words

2. our results improve



Moving Vectors Deeper 
into our Models

• This is a somewhat superficial use of 
vectors.

• Can vector representations help us 
choose the “best” proof of a sentence?

• We need two components: a way of 
composing vectors and a way of 
evaluating how good vectors (or 
combinations of vectors) are.
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Natural Deduction 
With Vectors

moons
n

which
(n\n)/(s/np)

Galileo
np

discovered
(np\s)/np

When the goal formula is atomic, we need to
select the focused formula and split the antecedent

Representing words as vectors and formulas as
vectors a neural network can learn these tasks
(Kogkalidis e.a. 2019) 

This sidesteps the need for vector composition!



Parsing With  
Proof Nets

• Proof nets are graph-based proof 
systems for linear logic and type-logical 
grammars

• They represent the combinatorics of the 
search space of proofs in a way which is 
neutral with respect to any proof search 
strategy
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Example: "John saw 
everyone”

s

np ) s
s( (np ) s)

np

s

np \ s

(np \ s) / np np

np

snp s

Figure 1: Formula unfolding for “John saw everyone”.

occurrences and L is a set of the links shown in Table 1 such that each local
neighbourhood respects the formulas shown in the table and such that:

• each formula is at most once the premiss of a link ,

• each formula is at most once the conclusion of a link.

The formulas which are not a conclusion of any link in a proof structure
are its hypotheses. The formulas which are not a premiss of any link in a
proof structure are its conclusions. Formulas which are both a premiss and a
conclusion of a link are internal nodes of the proof structure.

We say a proof structure with hypotheses � and conclusions � is a proof
structure of � ` �, overloading the ` symbol.

As an example, Figure 1 shows the formula unfolding of “John saw everyone”,

with “John” assigned np, “saw” (np \ s) / np, and “everyone” s( (np ) s) with
goal formula s. Given that this sentence is grammatical, we want to construct

a proof net of np, (np \ s) /np, s( (np) s) ` s, for some structured antecedent �

which has the formulas in the indicated left-to-right order. However, Figure 1

shows a proof structure with the following hypotheses and conclusions.

np, np, (np \ s) / np, np, s( (np ) s), s ` np, s, s, np, s

The problem with the proof structure of Figure 1 is that it has too many

atomic formulas, both as hypotheses and as conclusions. For example, the

leftmost isolated np, corresponding to the formula unfolding of “John”, is —

as it should be — a hypothesis of the proof structure. However, it is also a

conclusion of the proof structure and our goal is to construct a proof structure

with unique conclusion s (the rightmost isolated s node). Identifying the np
corresponding to “John” with the leftmost np of the subgraph corresponding to

“saw” will “cancel out” one premiss against a conclusion atomic formula (the

rightmost np of “saw” would also be a possibility, but would produce sentences

containing “saw John” rather than “John saw”). Figure 2 shows one possibility

of connecting the atomic formulas to produce a proof structure of the sequent

we are trying to prove.

2



Example: "John saw 
everyone”

s

np ) s
s( (np ) s)

np

s
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(np \ s) / np np

np
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Figure 2: Formula unfolding for “John saw everyone” with identifications of

atomic formulas.

np, (np \ s) / np, s( (np ) s) ` s

There are four possible proof structures (we have two choices for the np atoms

and two for the s atoms). It will turn out that two of these possibilities are proof

nets, one of them — the one following the connections shown in Figure 2 —

corresponding to a proof of “John saw everyone” and the other to a proof of

“Everyone saw John”.

Figure 3 shows (on the left hand side) the proof structure after node identi-

fications. The np conclusion of the )I link is drawn with an arc to arrive at the

object np of the transitive verb. Essentially, this is a visual representation of

the coindexation used for the introduction rules for the implications in natural

deduction. However, we still need a mechanism to ensure the introduction rule

has been correctly applied.

Definition 3 Given a proof structure P = hF,Li and a set of links L0 ✓ L,
the substructure P 0 induced by L0 is the P 0hF 0, L0i where F 0 is exactly the set
of those formula occurrences which occur in at least one neighbourhood of a link
in L0.

Each substructure of a proof structure is itself a proof structure.

Definition 4 A tensor graph is a connected proof structure with a unique root
node containing only tensor links. The trivial tensor graph is a single node.
Given a proof structure P , the components of P are the maximal substructures
of P which are tensor graphs. A tensor tree is an acyclic tensor graph.

For standard multimodal proof nets, we define correctness using tensor trees

instead of the more general notion used here. Ultimately, we still want to end

up with trees, although our immediate structures may be slightly more general.

3
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Figure 3: Proof structure (left) and abstract proof structure (right) for “John

saw everyone”.
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Table 2: Links for NL� abstract proof structures

Given a proof structure, we obtain an abstract proof structure by erasing

the formulas for all internal nodes of the proof structure: only the hypotheses

and the conclusions of an abstract proof structure are assigned a formula.

Definition 5 An abstract proof structure A is a tuple hV, L, h, ci where V is a
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occurrences and L is a set of the links shown in Table 1 such that each local
neighbourhood respects the formulas shown in the table and such that:

• each formula is at most once the premiss of a link ,

• each formula is at most once the conclusion of a link.

The formulas which are not a conclusion of any link in a proof structure
are its hypotheses. The formulas which are not a premiss of any link in a
proof structure are its conclusions. Formulas which are both a premiss and a
conclusion of a link are internal nodes of the proof structure.

We say a proof structure with hypotheses � and conclusions � is a proof
structure of � ` �, overloading the ` symbol.

As an example, Figure 1 shows the formula unfolding of “John saw everyone”,

with “John” assigned np, “saw” (np \ s) / np, and “everyone” s( (np ) s) with
goal formula s. Given that this sentence is grammatical, we want to construct

a proof net of np, (np \ s) /np, s( (np) s) ` s, for some structured antecedent �

which has the formulas in the indicated left-to-right order. However, Figure 1

shows a proof structure with the following hypotheses and conclusions.

np, np, (np \ s) / np, np, s( (np ) s), s ` np, s, s, np, s

The problem with the proof structure of Figure 1 is that it has too many

atomic formulas, both as hypotheses and as conclusions. For example, the

leftmost isolated np, corresponding to the formula unfolding of “John”, is —

as it should be — a hypothesis of the proof structure. However, it is also a

conclusion of the proof structure and our goal is to construct a proof structure

with unique conclusion s (the rightmost isolated s node). Identifying the np
corresponding to “John” with the leftmost np of the subgraph corresponding to

“saw” will “cancel out” one premiss against a conclusion atomic formula (the

rightmost np of “saw” would also be a possibility, but would produce sentences

containing “saw John” rather than “John saw”). Figure 2 shows one possibility

of connecting the atomic formulas to produce a proof structure of the sequent

we are trying to prove.
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“dog that Mary Saw 
Today’’

D Examples

D.1 Extraction

dog that Mary saw today

(n\n)/ (̂s "> np)

(n\n)/ (̂s "> np) (̂s "> np)

+

n\nn

+

n

⇥✏

s "> np np

">

s

that saw

(np\s)/np np

+

np\snp

+

s

today

s\ss

+

snp

Mary

n

dog



Propagating Vectors 
Through Proof Nets

• Specify propagation rules in a generic 
form with a composition operation and 
an identity element

• Allow certain lexical entries to override 
default

• Let neural network learn propagation 
which helps parsing best



Propagating Vectors 
Through Proof Nets

• Specify propagation rules in a generic 
form with a composition operation and 
an identity element

• Allow certain lexical entries to override 
default

• Let neural network learn propagation 
which helps parsing best



Baseline

• Baseline: composition is vector addition 
(maybe averaged at the end)

• Identity element is zero vector



Composition =  
Neural Net

Socher, Lin, Ng & Manning (2011)

Input vector 1 Input vector 2

Output
vector 
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Conclusions

• We have seen several superficial ways 
of incorporating vector representations 
and deep learning into type-logical 
grammars

• For the moment, only the supertagger 
vectors have been evaluated; they result 
in a cleaner, less ad hoc model and 
improved performance



The Future

• We want to evaluate the use of vectors 
into selecting the best proof and thereby 
the best lambda term meaning

• Is it useful to incorporate vector 
semantics for a fully semantic task (eg. 
entailment) with type-logical 
grammars?


