

RECONCILING VECTORS AND PROOFS

RICHARD MOOT (CNRS, LIRMM)

SUPERGROVER SUPERTAGGING USING GRAIL OVER VECTOR REPRESENTATIONS

> RICHARD MOOT (CNRS, LIRMM)

A TALE OF Two Theories of Meaning

- Translate words to vectors
- Translate words to formulas

LOGIC BASED ENTAILMENT

F1 = \exists e. went_to_by(e,John,Paris) & by(e,car) & \exists f. went_to(f,Bill,Paris) & by(f,train)F2

 $F2 = \exists d.went_to(d,Bill,Paris) \& by(d, d)$

ENTAILMENT EXAMPLE (FROM FRACAS)

John spoke to Mary on Monday. Bill didn't.

Т

H Bill didn't speak to Mary on Monday.

ENTAILMENT EXAMPLE (FROM FRACAS)

T John went to Paris by car and Bill by train.

H Bill went to Paris by train.

ENTAILMENT EXAMPLE (FROM RTE)

Eating lots of foods that are a good source ofT fiber may keep your blood glucose fromrising fast after you eat.

H Fiber improves blood sugar control.

QUESTION ANSWERING EXAMPLE (FROM RACE)

"Here's a letter for Miss Alice Brown," said the mailman. "I'm Alice Brown," a girl of about 18 said in a low voice. Alice looked at the envelope for a minute, and then handed it back to the mailman. "I'm sorry I can't take it, I don't have enough money to pay it", she said.

Q The girl handed the letter back to the mailman because

A1 she didn't know whose letter it was

A2 she had no money to pay the postage

A3 she received the letter but she didn't want to open it

A4 she had already known what was written in the letter

QUESTION ANSWERING EXAMPLE (FROM SQUAD)

In meteorology, precipitation is any product
of the condensation of atmospheric water
vapor that falls under gravity.

Q What causes precipitation to fall?

IS THERE STILL A PLACE FOR LOGIC?

- There have been enormous advances on the state-of-the art for many hard natural language understanding tasks (XLnet: 86.3 RTE, 98.6 QNLI)
- Is there still a place for logic?

IS THERE STILL A PLACE FOR LOGIC?

- Human annotators are notoriously bad at logical inferences.
- Ideally, we want an inference system which does *logic* at the level of our best theorem provers and *common sense reasoning* at the level of humans.

WHEN TO USE MACHINE LEARNING?

- We don't understand what's going on (eg. describing what is on a picture)
- We do understand, but there is no feasible algorithm (eg. chess, go)

TYPE-LOGICAL GRAMMAR

Formulas and corresponding expressions

- np
 Jean, l'étudiant, …
 - étudiant, économie, ...
- s Jean dort, Jean aime Marie
- np\s dort, aime Marie
- np/n

• n

• $(np \ s)/np$

- un, chaque, l'
- aime, étudie

Rules

Lambek categorial grammars have only four rules: an elimination and an introduction rule for both "\" and "/"

A/B	B	В	B/	$A_{[\setminus E]}$
А	[/ 1]		Α	[/[]]
	[D];	[D];		
• • •	[D] ¹	[D] ¹	••	•
• •			•	
А	5 / - 1.		A	F1 -7.
A/E	<u> </u>	B	$\setminus A$	-[\]1

Example

Example

Example

LAMBEK GRAMMARS AND BEYOND

- getting the semantics right requires a somewhat richer system than AB grammars
- introduction rules ("traces" or the original "slash categories" and their semantics)
- structural rules ("movement" or "head wrap", essentially restricted tree rewrite operations)

redactionqu'onacrééen $(n \setminus n)/(s/np)$ np $(np \setminus s)/(np \setminus s_{ppart})$ $(np \setminus s_{ppart})/np$

redactionqu'onacrééen $(n \setminus n)/(s/np)$ np $(np \setminus s)/(np \setminus s_{ppart})$ $(np \setminus s_{ppart})/np$ np

redaction

n

LAMBDA CALCULUS AND PROOFS AS TERMS

- Proofs in categorial grammar correspond to lambda terms
- These lambda terms
 "forget" the
 directions of the
 implications.

t:A/B	u:B	u:B	t:B\A	
(t u):A		(t u):A		
[x	:B]	[x:B]		
• • •		• • •		
t:A		t:A		
$A/B:\lambda$.x.t	$B \setminus A: \lambda x.t$		

- Killer sentenced to die for second time in 10 years.
- Enraged cow injures farmer with axe
- Top stories: ... Obama-Castro handshake and same-sex marriage date set

• Killer sentenced to die for second time in 10 years.

killer sentenced_to die for second...
np (np\s)/(np/s) np/s (np\s)\(np/s)
np/s

• Killer sentenced to die for second time in 10 years.

$$sentenced_to \quad die$$

$$(np\s)/(np/s) \quad np/s \quad for \ second...$$
killer
$$np/s \quad (np\s)\(np/s)$$

$$np \quad np/s$$
S

• Killer sentenced to die for second time in 10 years.

• Killer sentenced to die for second time in 10 years.

$$die$$
 for second...
 $sentenced_to np/s (np\s) (np/s)$
 $killer (np\s)/(np/s) np/s$
 $np np/s$
 s
- Killer sentenced to die for second time in 10 years.
- Enraged cost in the larger with axe
- Top stories: ... Obama-Castro handshake and same-sex marriage date set

- Killer sentenced to die for second time in 10 years.
- Enraged cow injures farmer with axe
- Top stories: ... Obama-Castro handshake and same-sex marriage date set

- Killer sentenced to die for second time in 10 years.
- Enraged cow injures farmer with axe
- Top stories: ... Obama-Castro handshake and same-sex marriage date set

- Killer sentenced to [die for second time in 10 years].
- Enraged cow [[injures farmer] with axe]
- Top stories: ... Obama-Castro
 [[handshake and same-sex marriage]
 date set]

- Killer [sentenced to die] for second time in 10 years.
- Enraged cow injures [farmer with axe]
- Top stories: ... [Obama-Castro handshake] and [same-sex marriage date set]

TYPE-LOGICAL GRAMMAR

WHERE COULD MACHINE LEARNING BE USEFUL?

- Assigning formulas to word (supertagging)
- Choosing the "best" proof among alternatives
- Computing entailments in the target logic (reinforcement learning)

WIDE-COVERAGE PARSING

- How can we parse arbitrary text with type-logical grammars?
- Before we can even start, we need a sufficiently large lexicon.
- How can we assign a formula to a word we have never seen with this formula? Maybe we have never seen the word at all.

WIDE-COVERAGE PARSING

- No good theoretical model of the "right" formula for the words in a sentence.
- Maybe a case for machine learning?
- However, we need a fair amount of data

However, the "de" preposition belongs to "responsable" (some adjectives select for prepositions: "responsable de X" functions as an adjective just as "responsable")

Remark however, that there is no way to derive this from the annotation as it is given. Manual intervention (or at least verification!) is unfortunately necessary to assure the correct placement of the hypothetical preposition.

STATISTICS ÅBOUT THE EXTRACTED FRENCH TREEBANK

- 15,590 sentences 445,918 words
- 43,098 distinct lexical entries
- 859 different formulas
- By comparison: 12,617 CFG rules

Question: can we actually use the extracted grammar for parsing?

Note: these are the statistics after considerable cleanup: the first version had over 4,000 different formulas!

LEXICON SIZE

- Many frequent words occur with very many different formulas
- Classic solution: supertagging

est - "is"	
(np\s)/np	23,2 %
$(np \ s)/(n \ n)$	20,6 %
$(np \ s)/(np \ s_{pass})$	16,8 %
$(cl_r \setminus (np \setminus s)) / (cl_r \setminus (np \setminus s_{ppart}))$	10,8 %
(np\s)/pp	8,1 %
$(np \ s)/(np \ s_{ppart})$	6,3 %
$(np \ s)/(np \ s_{infX})$	2,8 %
$((np \ s)/s_q)/(n \ n)$	2,2 %

WHAT SUPERTAGGING DOES

- Assigns each word the contextually most likely (set of) formulas

MINIMAL FUSION

Word to vector then vector to formula But which vectors?

WHAT DO WE USE AS INPUTS TO OUR MODELS?

- represent each word by a fixed-length vector
- vector representation must contain enough information for downstream tasks

MODEL INPUTS: NO EMBEDDING

MODEL INPUTS: WORD-BASED EMBEDDING

MODEL INPUTS: CHARACTER-BASED EMBEDDING

VECTOR MODELS

Context-based: word representation depends on context words in the input sentence (not globally in the corpus). "Un avocat mange un avocat"

Since these models are typically pre-trained on much larger datasets that your corpus, it is usually better to use one of these pretrained models than to use character-based inputs to your models yourself.


```
# input layers are the standard (averaged) ELMo output layer
```

```
sentence_embeddings = Input(shape = (None,embLen,), dtype = 'float32')
mask = Masking(mask_value=0.0)(sentence_embeddings)
X = Dropout(0.5)(mask)
```

```
# first bi-directional LSTM layer
```

X = Bidirectional(LSTM(128, recurrent_dropout=0.2, kernel_constraint=max_norm(mxn), return_sequences=True))(Xa G)

X = BatchNormalization()(X)

X = Dropout(dropout_value)(X)

Pos1 output

```
Pos1 = TimeDistributed(Dense(32,kernel_constraint=max_norm(mxn)))(X)
Pos1 = TimeDistributed(Dropout(dropout_value))(Pos1)
pos1_output = TimeDistributed(Dense(numPos1Classes, name='pos1_output', activation='softmax',kernel_constrain
ft=max_norm(mxn)))(Pos1)
```

Pos2 output

Pos2 = TimeDistributed(Dense(32,kernel_constraint=max_norm(mxn)))(X)
Pos2 = TimeDistributed(Dropout(dropout_value))(Pos2)
pos2_output = TimeDistributed(Dense(numPos2Classes, name='pos2_output', activation='softmax',kernel_constrain@st=max_norm(mxn)))(Pos2)
Gt=max_norm(mxn)))(Pos2)

second bi-directional LSTM layer

```
X = BatchNormalization()(X)
```

```
X = Dropout(dropout_value)(X)
```

```
# supertag output
```

X = TimeDistributed(Dense(32, kernel_constraint=max_norm(mxn)))(X)

```
X = TimeDistributed(Dropout(dropout_value))(X)
```

```
super_output = TimeDistributed(Dense(numSuperClasses, name='super_output', activation='softmax', kernel_const
graint=max_norm(mxn)))(X)
```

model = Model(sentence_embeddings, [pos1_output,pos2_output,super_output])

SUPERTAGGER PERFORMANCE (MAXENT)

Corpus	POS	Super	0,1	0,01	F/w
FTB	97,8 %	90,6 %	96,4 %	98,4 %	2,3

SUPERTAGGER PERFORMANCE (MAXENT)

Corpus	POS	Super	0,1	0,01	F/w
FTB	97,8 %	90,6 %	96,4 %	98,4 %	2,3
Le Monde 2010	97,3 %	89,9 %	95,8 %	97,9 %	2,2
Sequoia/Annodis	97,3 %	88,1 %	94,8 %	97,6 %	2,4
Itipy/Forbes	95,7 %	86,7 %	93,8 %	97,1 %	2,6

How good is this?

- 90.6% accuracy for the best supertag sounds good, but this is given the correct part-of-speech tag
- When combining POS-tagger with supertagger, accuracy drops to 88.7% (without POS-tagger, we end up at 86.7%, so POS-tagging helps)

SUPERTAGGER PERFORMANCE

Corpus	POS	Super	0,1	0,01	0,001
MaxEnt	97,8	90,6	96,4 (1,4)	98,4 (2,3)	98,8 (4,7)
LSTM	98,4	92,2	95,8 (1,2)	97,9 (1,5)	99,0 (2,4)
LSTM+ELMo	99,1	93,2	97,6 (1,1)	98,6 (1,5)	99,3 (3,0)

with β =0,0003, we have 4,6 formulas per word (same as ME with β =0,001) but accuracy of 99.5%

LSTM VS MAXENT

LSTM VS MAXENT

average number of formulas per word

TAKING STOCK

- Vector representations improve supertagger results.
- When our vector representations are rich enough
 - we no longer need ad hoc features to deal with unknown words
 - 2. our results improve

MOVING VECTORS DEEPER INTO OUR MODELS

- This is a somewhat superficial use of vectors.
- Can vector representations help us choose the "best" proof of a sentence?
- We need two components: a way of *composing* vectors and a way of *evaluating* how good vectors (or combinations of vectors) are.

moons n Galileo discovered np (np\s)/np

Galileo discovered np (np\s)/np

NATURAL DEDUCTION WITH VECTORS

moons	which	Galileo	discovered
n	(n n)/(s/np)	np	(np\s)/np

When the goal formula is atomic, we need to *select* the focused formula and *split* the antecedent

Representing words as vectors and formulas as vectors a neural network can learn these tasks (Kogkalidis e.a. 2019)

This sidesteps the need for vector composition!

- Proof nets are graph-based proof systems for linear logic and type-logical grammars
- They represent the combinatorics of the search space of proofs in a way which is neutral with respect to any proof search strategy

s

"DOG THAT MARY SAW TODAY"

PROPAGATING VECTORS THROUGH PROOF NETS

- Specify propagation rules in a generic form with a composition operation and an identity element
- Allow certain lexical entries to override default

Let neural network learn propagation which helps parsing best

PROPAGATING VECTORS THROUGH PROOF NETS

- Specify propagation rules in a generic form with a composition operation and an identity element
- Allow certain lexical entries to override default
- Let neural network learn propagation which helps parsing best

BASELINE

- Baseline: composition is vector addition (maybe averaged at the end)
- Identity element is zero vector

COMPOSITION = NEURAL NET

Socher, Lin, Ng & Manning (2011)

CONCLUSIONS

- We have seen several superficial ways of incorporating vector representations and deep learning into type-logical grammars
- For the moment, only the supertagger vectors have been evaluated; they result in a cleaner, less ad hoc model and improved performance

THE FUTURE

- We want to evaluate the use of vectors into selecting the best proof and thereby the best lambda term meaning
- Is it useful to incorporate vector semantics for a fully semantic task (eg. entailment) with type-logical grammars?