
	

Natural Language Semantics and

Computability

Richard Moot and Christian Retoré

CNRS (LaBRI) and Université de Montepellier (LIRMM)

Computability in Europe

27 june 2016

	

A Computational Semantics

	

A.1. Computational semantics à la Montague

Method for transforming natural language sentences into for-
mulas of higher-order logic.

John seeks a unicorn
↓

1. ∃x .unicorn(x) ∧ seek(John, x)

2. seek(John,λP .∃x .unicorn(x) ∧ (P x))

	

A.2. Applications: textual entailment

Scott Island is part of the Ross Dependency, claimed by New
Zealand

1. Scott Island belongs to the Ross Dependency.

2. Scott Island belongs to New Zealand.

	

A.3. Computing meaning in categorial grammar

Lambek calculus proof
↓∗

(multiplicative) intuitionistic linear logic proof
≡Curry-Howard

(linear) lambda term
↓lex

Substitute the lexical (simply typed,
but not necessarily linear!) lambda terms.

↓β
Target language:

Higher-Order Logic (HOL, as Montague)

	

A.4. Syntax: Lambek calculus

A/B B

A
/E

B B\A
A

\E

... [B]i....
A

A/B
/Ii

[B]i
A

B\A \Ii

	

A.5. Example

everyone contests a penalty
s/(np\s) (np\s)/np ((s/np)\s)/n n

	

A.6. Example

everyone contests a penalty

s/(np\s) (np\s)/np
((s/np)\s)/n n

(s/np)\s /E

	

A.7. Example

everyone contests a penalty

s/(np\s) (np\s)/np np

((s/np)\s)/n n

(s/np)\s /E

	

A.8. Example

everyone contests a penalty

s/(np\s)
(np\s)/np np

np\s /E
((s/np)\s)/n n

(s/np)\s /E

	

A.9. Example

s/(np\s)
(np\s)/np [np]1

np\s /E

s
/E

s/np
/I1

((s/np)\s)/n n

(s/np)\s /E

s
/E

	

A.10. Syntax and semantics

(Syntactic type)∗ = Semantic type
s∗ = t a sentence is a proposition

np∗ = e a pronoun is an entity
n∗ = e → t a noun is a set of entities

(a\b)∗ = (b/a)∗ = a∗ → b∗ extends ()∗ to all formulas

	

A.11. Syntactic proof

s/(np\s)
(np\s)/np [np]1

np\s /E

s
/E

s/np
/I1

((s/np)\s)/n n

(s/np)\s /E

s
/E

	

A.12. Semantic proof

(e → t)→ t
e → (e → t) [e]1

e → t →E

t
→E

e → t → I1
(e → t)→ ((e → t)→ t) e → t

(e → t)→ t
→E

t →E

	

A.13. Curry-Howard isomorphism

e(e→t)→t

ce→(e→t) [xe]1

(c x)e→t →E

(e (c x))t
→E

(λx .(e (c x)))e→t → I1
a(e→t)→((e→t)→t) pe→t

(a p)(e→t)→t →E

((a p)(λx .(e (c x))))t
→E

	

A.14. Semantic lexicon

Word semantic type u∗

semantic term: λ-term of type u∗

xv the variable or the constant x is of type v
everyone (e → t)→ t

λPe→t∀(e→t)→t(λxe(P x))
contests e → (e → t)

λy e λxe ((contestse→(e→t) x) y)
a (e → t)→ ((e → t)→ t)

λPe→t λQe→t (∃(e→t)→t (λxe(∧t→(t→t)(P x)(Q x))))
penalty e → t

λxe(penaltye→t x)

	

A.15. Simplified semantic lexicon

Mot semantic type u∗

semantic term: λ-terme de type u∗

xv the variable or the constant x is of type v
everyone (e → t)→ t

λPe→t∀xe(P x)
contests e → (e → t)

λy e λxe contests(x , y)
a (e → t)→ ((e → t)→ t)

λPe→t λQe→t ∃xe(P x) ∧ (Q x)
penalty e → t

λxepenalty(x)

	

A.16. Substitution

(a p) ≡ (λPe→t λQe→t ∃xe(P x) ∧ (Q x)) λy epenalty(y)

λQe→t ∃xe((λy epenalty(y)) x) ∧ (Q x))

λQe→t ∃xepenalty(x) ∧ (Q x)

	

A.17. Substitution

(e (c x)) ≡ (λPe→t∀y e(P y))((λze λv e contests(v , z)) x)

(λPe→t∀y e(P y))(λv e contests(v , x))

∀y e((λv e contests(v , x)) y)

∀y econtests(y , x)

	

A.18. Substitution

((a p)(λx .(e (c x))))
≡ (λQe→t ∃xepenalty(x) ∧ (Q x))

(λy .∀zecontests(z , y))

∃xepenalty(x) ∧ ((λy .∀zecontests(z , y)) x)

∃xepenalty(x) ∧ ∀zecontests(z , x)

	

B Complexity

	

B.1. What is the precise complexity question?

1. is there a reading?

2. what is the best/most likely reading?

3. what are all possible readings?

	

B.2. Complexity of the syntax

Finding a proof for the Lambek calculus (and many of its exten-
sions) is NP complete.
A sentence with n quantifiers can have up to n! readings. A sim-
ple counting argument shows that the Lambek calculus (though
not its extensions) cannot generate all readings for an n quanti-
fier sentence as distinct proofs.

Open question is there an algorithm producing shared meaning
representations with the following properties:

1. the algorithm outputs no when the sentence is ungrammat-
ical,

2. there is a fairly simple algorithm (say of a low-degree poly-
nomial at worst) for recovering all readings from the shared
representation,

3. the shared structure is polynomial in the size of the input.

	

B.3. Complexity of the semantics: normaliza-
tion

• Normalizing simply typed lambda terms is known to be of
non-elementary complexity (Schwichtenberg 1982).

• In practice, this is not a big bottleneck (Bos et al. 2004,
Moot 2010).

• One explanation for this efficiency is that lambda terms
used in grammars are in soft linear logic (Lafont 2004).

	

B.4. Complexity of the semantics: inference

• Formulas in higher-order logic, though of independent in-
terest to formal semanticists, are only as useful as what
we can do with them.

• Already for first-order logic, logical inference is of course
undecidable.

• In spite of this, there are a number of inference systems
which perform fairly well (generally, this means high preci-
sion combined with low recall).

	

C Conclusion

	

C.1. Conclusion

1. Though the complexity of parsing has been widely studied,
much more remains to be done for computational seman-
tics.

2. In many cases (extensions of the Lambek calculus com-
bined with soft linear logic) computing the semantics is NP
complete.

