Proof-theoretic aspects of hybrid type-logical grammars

Richard Moot and Symon Jory Stevens-Guille

Richard Moot and Symon Jory Stevens-Guille Proof-theoretic aspects of hybrid type-logical grammars

Outline

Introduction: Hybrid Type-Logical Grammars Natural deduction Proof nets Complexity Conclusion

- Introduction: Hybrid Type-Logical Grammars
- 2 Natural deduction
 - Substitution Lemma
 - Normalisation
 - Confluence
 - Subformula property
- 3 Proof nets
 - Proof structures
 - Contractions
 - Structural Rules
 - Soundness and completeness
- 4 Complexity
 - NP completeness
 - The general case

Conclusion

Introduction: Hybrid Type-Logical Grammars

- Hybrid type-logical grammars (HTLG) are a logic introduced by Kubota and Levine (2012)
- HTLG combines the standard Lambek grammar implications with the lambda grammar operations
- It provides a simple account of many phenomena on the syntax-semantics interface, for which neither of its subsystems has equally simple solutions
- Kubota and Levine (2013) 'acknowledge that there remains an important theoretical issue: the formal properties of our hybrid implicational logic are currently unknown'

(人間) ト く ヨ ト く ヨ ト

Substitution Lemma Normalisation Confluence Subformula property

Natural deduction: Gentzen style

$$\frac{\overline{p^{s}: w \vdash M: A} \operatorname{Lex}}{\overline{x^{\alpha}: A \vdash x^{\alpha}: A} \operatorname{Ax}} = \frac{\Gamma \vdash N^{\alpha}: A \bigtriangleup \Delta \vdash M^{\alpha \to \beta}: A \multimap B}{\Gamma, \Delta \vdash (MN)^{\beta}: B} \multimap E} = \Gamma, x^{\alpha}: A \vdash M^{\beta}: B} = \Gamma, x^{\alpha}: A \vdash M^{\beta}: B} = \frac{\Gamma, x^{\alpha}: A \vdash M^{\beta}: B}{\Gamma \vdash (\lambda x. M)^{\alpha \to \beta}: A \multimap B} \multimap I} = \Gamma \vdash M^{s}: A/B \bigtriangleup \Delta \vdash N^{s}: B} = \frac{\Gamma \vdash M^{s}: A/B \bigtriangleup \Delta \vdash N^{s}: B}{\Gamma, \Delta \vdash (M + N)^{s}: A} / E} = \frac{\Gamma, p^{s}: A \vdash (M + p)^{s}: B}{\Gamma \vdash M^{s}: B/A} / I} = \frac{\Delta \vdash M^{s}: B}{\Delta, \Gamma \vdash (M + N)^{s}: A} \lor E}{\rho^{s}: A, \Gamma \vdash (p + M)^{s}: B} \to A^{\alpha} \to$$

Richard Moot and Symon Jory Stevens-Guille Proof-theoretic aspects of hybrid type-logical grammars

Substitution Lemma Normalisation Confluence Subformula property

Natural deduction: Prawitz style

$$\frac{[x^{\alpha}:A]^{i}}{(MN)^{\beta}:B} \longrightarrow E \qquad \frac{[x^{\alpha}:A]^{i}}{(\lambda x.M)^{\alpha \to \beta}:A \to B} \longrightarrow I_{i}$$

$$\frac{M^{s}:A}{(M+N)^{s}:B} \longrightarrow E \qquad \frac{(x+M)^{s}:A \to B}{[x^{s}:A]^{i}} \longrightarrow I_{i}$$

$$\frac{M^{s}:B/A}{(M+N)^{s}:B} \setminus E \qquad \frac{(x+M)^{s}:B}{M^{s}:A \setminus B} \setminus I_{i}$$

$$\frac{M^{s}:B/A}{(M+N)^{s}:B} / E \qquad \frac{(M+x)^{s}:B}{M^{s}:B/A} / I_{i}$$

Richard Moot and Symon Jory Stevens-Guille Proof-theoretic aspects of hybrid type-logical grammars

A B > A B >

Outline Introduction: Hybrid Type-Logical Grammars Natural deduction Proof nets Complexity Conclusion	Substitution Lemma Normalisation Confluence Subformula property

Example

$$\frac{\lambda P.(P e):(np \multimap s) \multimap s}{\frac{(\lambda P.(P e))(\lambda x.(x + y)):np \multimap s}{\lambda x.(x + y):np \multimap s}} \bigvee_{\substack{x + y:s \\ \overline{\lambda x.(x + y):np \multimap s}}} \langle E \\ \frac{(\lambda P.(P e))(\lambda x.(x + y)):s}{\frac{(\lambda x.(x + y))e:s}{e + y:s}} \beta \\ \frac{(\lambda x.(x + y))e:s}{\frac{e + y:s}{e : s/(np \setminus s)}} / I_2$$

Substitution Lemma Normalisation Confluence Subformula property

Substitution Lemma

Lemma

Let δ_1 be a proof of $\Gamma \vdash N : A$ and δ_2 a proof of $\Delta, x : A \vdash M[x] : C$ such that N and M share no free variables, then there is a proof of $\Gamma, \Delta \vdash M[N] : C$.

$$\begin{array}{c} X : A \\ \vdots \delta_1 \\ V : A \\ M[x] : C \end{array}$$

$$\begin{matrix} \vdots & o_1 \\ N \vdots & A \\ \vdots & \delta_2[x := N] \\ M[N] : C \end{matrix}$$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Reduction steps

Γ

- 4 同 6 4 回 6 4 回 6

Substitution Lemma Normalisation Confluence Subformula property

Strong normalisation

Theorem

HTLG is strongly normalizing.

Proof.

To show strong normalization, we need to show that there are no infinite reduction sequences. Since each reduction reduces the size of the proof, this is trivial.

< 日 > < 同 > < 三 > < 三 >

Substitution Lemma Normalisation **Confluence** Subformula property

Confluence

Theorem

Normalization for HTLG proofs is confluent.

Proof.

It is easy to show weak confluence: whenever a proof can be reduced by two different reductions R_1 and R_2 , then reducing either redex will preserve the other redex , and R_1 followed by R_2 will produce the same proof as R_2 followed by R_1 . Since we have already shown strong normalisation, weak confluence entails strong confluence by Newman's Lemma.

・ロト ・同ト ・ヨト ・ヨト

Substitution Lemma Normalisation Confluence Subformula property

Unicity of normal forms and subformula property

Corollary

HTLG proofs have a unique normal form.

Proof.

Immediate by strong normalisation and confluence.

Corollary

HTLG proofs have the subformula property.

Proof.

In a normal form proof, every formula is either a subformula of one of the hypotheses or a subformula of the conclusion. $\hfill\square$

Richard Moot and Symon Jory Stevens-Guille Proof-theoretic aspects of hybrid type-logical grammars

- we have shown several basic properties for HTLG natural deduction showing the logic introduced by Kobuta and Levine is well-behaved,
- we generally want a logic to have multiple proof systems,
- it is fairly easy to give a sequent calculus for HTLG,
- instead we will look at *proof nets* for HTLG.

| 4 同 1 4 三 1 4 三 1

Outline Introduction: Hybrid Type-Logical Grammars Natural deduction Proof nets Complexity Conclusion	Proof structures Contractions Structural Rules Soundness and completeness
Proof nets	

- introduced for linear logic as a way to represent proofs as (hyper)graphs,
- removes 'boring' rule permutations of the sequent calculus,
- easily extends to other connectives ('●', '◇', '□') and structural rules,
- natural combinatorial representation of the search space for proofs (facilitating proof search and complexity analysis).

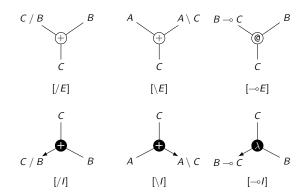
Outline Introduction: Hybrid Type-Logical Grammars Natural deduction Proof nets Complexity Conclusion	Proof structures Contractions Structural Rules Soundness and completeness
Proof net parsing	

- deterministically unfold formulas using links (\approx logical rules),
- connect atomic formulas to form proof structures (proof candidates),
- verify correctness of the proof candidate using graph-theoretic propertie of the underlying graph (here: contractions in the style of Danos).

4 B N 4 B N

Proof structures Contractions Structural Rules Soundness and completeness

Links

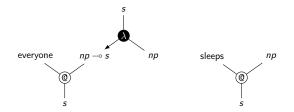


<ロ> <同> <同> < 同> < 同>

Proof structures Contractions Structural Rules Soundness and completeness

Example proof structure

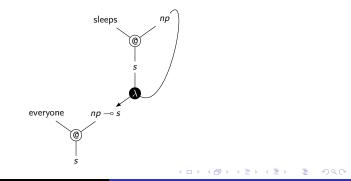
Given lexical entries 'everyone' with formula $(np \multimap s) \multimap s$ and 'sleeps' with for $np \multimap s$, formula unfolding produces the following.



Proof structures Contractions Structural Rules Soundness and completeness

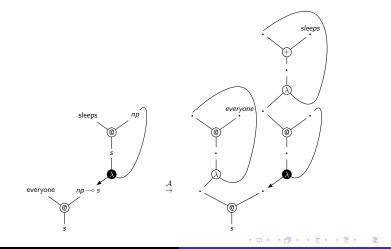
Example proof structure

Connecting the np and s atomic formulas produces the following proof structure from the types of 'everyone' and 'sleeps' to the type s.



Proof structures Contractions Structural Rules Soundness and completeness

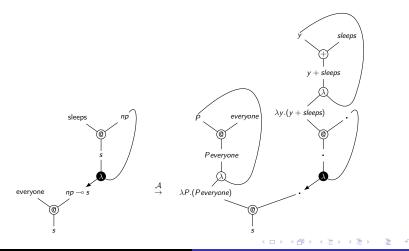
Converting a proof structure to an abstract proof structure



Richard Moot and Symon Jory Stevens-Guille Proof-theoretic aspects of hybrid type-logical grammars

Proof structures Contractions Structural Rules Soundness and completeness

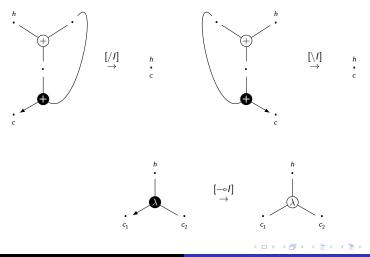
Converting a proof structure to an abstract proof structure



Richard Moot and Symon Jory Stevens-Guille Proof-theoretic aspects of hybrid type-logical grammars

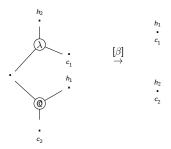
Proof structures Contractions Structural Rules Soundness and completeness

Contractions



Richard Moot and Symon Jory Stevens-Guille Proof-theoretic aspects of hybrid type-logical grammars

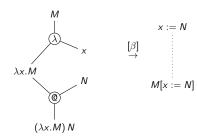
Structural rules



< ロ > < 同 > < 回 > < 回 >

Proof structures Contractions Structural Rules Soundness and completeness

Structural rules



< ロ > < 同 > < 回 > < 回 >

Proof structures Contractions Structural Rules Soundness and completeness

Soundness and completeness

Definition

a proof structure is a *proof net* iff its abstract proof structure contracts to a linear lambda term (represented as a graph).

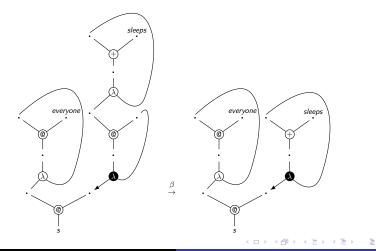
We need to show:

for every natural deduction proof, there is a proof net

If or every proof net there is a natural deduction proof in both cases the lambda term of the natural deduction proof must correspond to the lambda term of the contracted proof net.

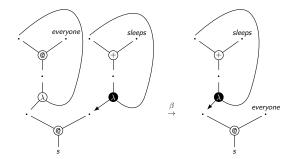
- 4 同 6 4 日 6 4 日 6

Example



Richard Moot and Symon Jory Stevens-Guille Proof-theoretic aspects of hybrid type-logical grammars

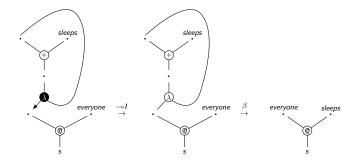
Outline Introduction: Hybrid Type-Logical Grammars Natural deduction Proof nets Complexity Conclusion	Proof structures Contractions Structural Rules Soundness and completeness
Example	



<ロ> <同> <同> < 同> < 同>

æ

Outline Introduction: Hybrid Type-Logical Grammars Natural deduction Proof nets Complexity Conclusion	Proof structures Contractions Structural Rules Soundness and completeness
Example	



< □ > < 同 >

★ 문 ► ★ 문 ►

æ

Outline Introduction: Hybrid Type-Logical Grammars Natural deduction Proof nets Complexity Conclusion Outline Proof structures Contractions Structural Rules Soundness and completeness

Proof: soundness

Lemma

If δ is a natural deduction proof of $N_1 : A_1, \ldots, N_k : A_k \vdash M : C$, then we can construct a proof net with premisses A_1, \ldots, A_n and conclusion C contracting to M.

Proof Easy induction on the length of the natural deduction proof and case analysis on the last rule. We show only one of the introduction rules.

- 4 同 6 4 日 6 4 日 6

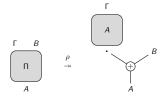
Outline Introduction: Hybrid Type-Logical Grammars Natural deduction Proof nets Complexity Conclusion	Proof structures Contractions Structural Rules Soundness and completeness
---	--

Proof: soundness

If the last rules is /I we are in the following case.

$$\begin{bmatrix} x : B \end{bmatrix}^{i} \\ \vdots \\ \delta \\ \frac{N + x : A}{N : A/B} / I_{i}$$

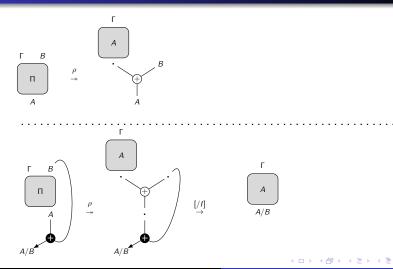
Induction hypothesis gives us a proof net contracting to N + x.



We extend this to a proof net of N : A/B as follows.

Outline Introduction: Hybrid Type-Logical Grammars Natural deduction Proof nets Complexity Conclusion Natural deduction Proof structures Contractions Structural Rules Soundness and completeness

Proof: soundness



Richard Moot and Symon Jory Stevens-Guille Proof-theoretic aspects of hybrid type-logical grammars

 Outline

 Introduction: Hybrid Type-Logical Grammars
 Proof structures

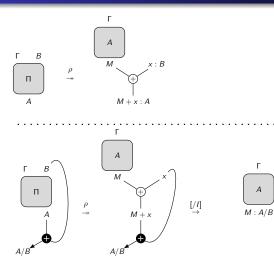
 Natural deduction
 Contractions

 Proof nets
 Structural Rules

 Complexity
 Soundness and completeness

 Conclusion
 Conclusion

Proof: soundness



Richard Moot and Symon Jory Stevens-Guille Proof-theoretic aspects of hybrid type-logical grammars

< 同 ▶

< E

Outline Introduction: Hybrid Type-Logical Grammars Natural deduction Proof nets Complexity Conclusion Proof structures Structural Rules Soundness and completeness

Proof: completeness

Lemma

Given a proof net Π with premisses A_1, \ldots, A_n and conclusion C converting to a lambda graph M, there is a natural deduction proof $N_1 : A_1, \ldots, N_k : A_n \vdash M : C$.

Proof We only show the case for $-\circ I$. The other cases are simple adaptations of multimodal proof nets.

(人間) ト く ヨ ト く ヨ ト

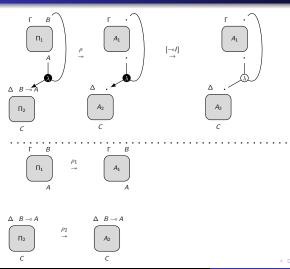
Proof structures Contractions Structural Rules Soundness and completeness

э

< E

< 一型

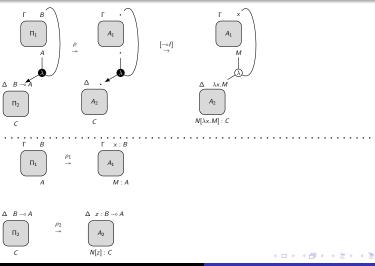
Proof: completeness



Richard Moot and Symon Jory Stevens-Guille Proof-theoretic aspects of hybrid type-logical grammars

Proof structures Contractions Structural Rules Soundness and completeness

Proof: completeness



Richard Moot and Symon Jory Stevens-Guille Proof-theoretic aspects of hybrid type-logical grammars

Outline Grammars deduction Proof nets Complexity Conclusion	Proof structures Contractions Structural Rules Soundness and completeness	

Proof: completeness

Induction hypothesis gives us a proof $\delta 1$ of $\Gamma, x : B \vdash M : A$ and a proof δ_2 of $\Delta, z : B \vdash N[z] : C$. We can combine these as follows to produce the required proof of $\Gamma, \Delta \vdash N[\lambda x.M] : C$.

$$\begin{array}{c}
x : B \\
\vdots \delta_1 \\
\frac{M : A}{\lambda x.M : B \multimap A} \multimap I \\
\vdots \delta_2, z := \lambda x.M \\
N[\lambda x.M] : C
\end{array}$$

- new proof calculus for HTLG,
- generic and flexible proof search procedure,
- the proof net calculus can easily be extended to incorporate the '•', '◊' and '□' connectives, as well as multimodality and structural rules,
- simplifies complexity analysis of HTLG and its variants.

- 同 ト - ヨ ト - - ヨ ト

Confluence Contractibility NP completeness The general case

Confluence

Lemma

The conversions for abstract proof structures are confluent.

Proof.

Weak confluence is easy to show: every contraction preserves all other redexes (using the fact that all lambda-terms are linear).

We can preserve confluence when adding associativity (compiling away associativity using *n*-premiss links) and the identity element (requires adding a contraction for '/' and '\').

・ロト ・同ト ・ヨト ・ヨト

Confluence Contractibility NP completeness The general case

Complexity of contractibility

Lemma

We can verify contractibility of a proof structure in polynomial time.

Proof.

Given confluence and the fact that all contractions reduce the size of the abstract proof structure, there are at most $O(n^2)$ contraction steps (where *n* is the size of the abstract proof structure).

The lemma holds even in the multimodal case with associativity for any number of the binary modes.

Confluence Contractibility NP completeness The general case

NP completeness

Theorem

HTLG parsing is NP complete

Proof.

Since HTLG contains (lexicalized) ACG and (implicational) Lambek calculus as subsystems, NP hardness is immediate. To show HTLG parsing is NP complete, it suffices to show that we can verify that a proof candidate is a proof (i.e. that a proof structure is a proof net) in polynomial time.

・ロト ・同ト ・ヨト ・ヨト

Confluence Contractibility NP completeness **The general case**

Complexity: the general case

Theorem

multimodal HTLG parsing with an arbitrary set of non-expanding structural rule is NP hard and in PSPACE.

Proof.

It is easy to show that in this general case, HTLG parsing can be done in nondeterministic polynomial space. Given PSPACE completeness of multimodal type-logical grammars (with a variable, non-expanding structural rule component), the theorem follows.

< 日 > < 同 > < 三 > < 三 >

- We have investigated the proof-theoretic foundations of Hybrid Type-Logical Grammars and proved several basic properties of the natural deduction calculus (strong normalisation, subformula property, uniqueness of normal forms),
- we have introduced a proof net calculus for HTLG,
- we have analysed the complexity of HTLG and some of its variants.

- 4 E b 4 E b