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Habilitation à diriger des recherches

Examining Committee:

V. Michele Abrusci, Rapporteur

David Delahaye, Examinateur

Andreas Herzig, Examinateur

Gérard Huet, Rapporteur

Robert D. Levine, Examinateur

Reinhard Muskens, Examinateur

Myriam Quatrini, Rapporteuse

Christian Retoré, Examinateur
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1 Introduction

Logic textbooks often begin by discussing the translation of natural language
expressions such as “some freshmen are intelligent” to the corresponding log-
ical formulas such as ∃x.[freshman(x)∧ intelligent(x)] (from (Suppes 1957, p.
49)). Even for simple sentences such as this, the logical meaning is not always
obvious: does the plural “some freshmen” imply there must be at least two in-
telligent freshmen for the sentence to be true, or is one enough? A translation
into logic forces us to be very precise about what a sentence means.

Since the work of Montague (1974), work in formal semantics has had as
one of its main goals to automate the assignment of logical formulas to natu-
ral language expressions (even though a lot of work today is more concerned
with describing the required input/output relations of such a system than
with actually producing working, computational grammar fragments). In for-
mal semantics, the basic data are natural language strings and sets of logical
formulas representing possible meanings (readings) of these strings. There are
of course many questions about what set of logical primitives and indeed what
logic is best for representing natural language meaning. I will not have many
things to say about these questions. Montague (1974) used higher-order logic
with an identity predicate, and added connectives from modal and temporal
logic, but many alternatives exists (Kamp & Reyle 1993, Asher 2011). A fully
adequate logical theory of natural language semantics will need to be able
to correctly model many types of reasoning (deontic, dealing with permis-
sion and obligation, alethic, dealing with possibility and necessity, temporal,
dealing with time and temporal ordering, etc.) but also the interactions be-
tween them. In addition, there are many other topics in natural language
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1. Introduction

semantics. Among many others, these include: imperatives (Fox 2015), pre-
supposition and implicature (Gazdar 1979, Potts 2015), generics (Carlson &
Pelletier 1995, Pelletier & Asher 1997), plurals (Kamp & Reyle 1993), aspect
(Verkuyl, de Swart & van Hout 2005), vagueness (Égré & Klinedinst 2011),
irony (Wallace, Choe, Kertz & Charniak 2014) and metaphors (Veale, Shutova
& Klebanov 2016). In general, there are two types of problems to be solved
for each of these:

1. automated detection, which is easy for plurals and (direct) imperatives1

but hard for generics and for irony, and

2. formal modelling, which consists of modelling the syntax-semantics in-
terface and of providing the logical primitives (with the logically and
linguistically desired properties) in the semantic language.

This is not intended to be a textbook in formal semantics. The different
semantic phenomena which were listed above were only intended to give an
idea of the breadth and the complexity that a full logical theory of natural
language semantics will have to cover. I refer the reader interested in any of
these topics in semantics to the cited references. However, we will encounter
a number of interesting phenomena on the syntax-semantics interface in the
rest of this chapter (and further on in this book).

Type-logical grammars are a systematic way to set up theories of string-
meaning relations, essentially compelling us to develop a formal theory of
syntax and a formal theory of semantics in parallel. Type-logical grammars
are a family of grammar formalisms aiming to provide a theory of natural
language, and in particular its syntax-semantics interface, based on logic and
type theory.

1.1 Motivations: grammar, meaning and logic

At this point, the reader might be skeptical about the usefulness of logic both
for grammar design and for meaning representation. Might these be cases
of someone with only a hammer seeing every problem as a nail? There is, of
course, a trivial sense in which we can always translate any sufficiently precise
and mechanisable theory of syntax or of meaning into first-order logic (given
the Church-Turing thesis and the possibility of coding Turing machines into
first-order logic). This, however, is not what interests us. We want to find a
way of representing natural language grammar and natural language meaning
into logic which is insightful, which has non-trivial consequences, and which
makes non-trivial predictions. In short, we want to use logic to develop good
scientific theories.

1That is, we can identify “close the window” and “pass me the salt” as imperatives
based on their morphosyntactic properties, but identifying “it’s a bit cold in here” and
“can you pass me the salt?” as polite versions of the two previous phrases is much harder.
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Motivations: grammar, meaning and logic

1.1.1 Logic for grammar design

Many grammar formalisms can be cast as logical theories (Pereira & Warren
1983, Shieber, Schabes & Pereira 1995, Pereira & Shieber 1987), and this
is true even for the more linguistically sophisticated ones, like HPSG, which
has a standard logical interpretation (Pollard & Sag 1994, Section 1.2), and
LFG, which uses linear logic at the level of the syntax-semantics interface
(Dalrymple, Lamping, Pereira & Saraswat 1999) but which can be usefully
interpreted as a type-logical grammar as well (Oehrle 1999, Muskens 2001).

What distinguishes type-logical grammars from these other formalisms
is that type-logical grammars are not logical theories but rather logics. In
other words, while other formalisms stipulate grammatical principles as non-
logical axioms (which can be tweaked in different ways, when required), in
type-logical grammars the logic and the grammatical formalisms are the same
object2. This means that we can prove important meta-theoretical properties
such as decidability and computational complexity once and for all.

The reader may be skeptical about how how useful it is to use logic for
modelling syntactic composition. Before the end of this chapter, I hope I will
have shown enough examples of complex linguistic phenomena and their treat-
ment both at the level of syntactic composition and at the level of meaning
representation to have expelled most of this skepticism.

1.1.2 Logic for meaning representation

One of the main ways to asses the adequacy of a theory of natural language
semantics is how well it can model entailment and contradiction. Textual
entailment has many applications in natural language processing, notably for
question answering and automatic text summarisation (Dagan, Roth, Sam-
mons & Zanzoto 2013).

It is important to note that we use logic as a normative model of contra-
diction and entailment and not as a descriptive one. In other words, we use
logic to model how humans should reason, not how they do reason. This is of
course what logic is designed to do. However, some tasks in natural language
processing — notably the entailment and contradiction tasks commonly used
in natural language processing (Dagan et al. 2013) — seek to emulate human
performance on these tasks. While one of the classic problems in artificial
intelligence is how to model common sense, world knowledge, etc. (Davis
& Marcus 2015), and achieving human-like performance for these problems
would be an impressive feat, there is also an important, purely logical part
to entailment and contradiction. It is reasonable to demand that automated
reasoning systems have perfect (or at least superhuman) scores for Aristolean
syllogisms like the following.

1. None of the artists is a beekeeper.

2There is a strong and a weak form of this claim. The strong version states that all
linguistic principles must be logical properties. The weak version allows for some extra-
logical principles (non-logical axioms, lexical rules, etc.), but only as a last resort.
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1. Introduction

2. All the beekeepers are chemists.

3. There is at least one beekeeper3.

Humans do extremely poorly for this type of syllogism4, a majority draw-
ing a wrong conclusion like ‘None of the artists is a chemist’, ‘None of the
chemists is an artist’ or ‘Some of the artists are not chemists’5. Similarly, we
should expect perfect entailment/contradiction results for many of the types
of examples in the FraCaS test set (Cooper, Crouch, van Eijck, Fox, Gen-
abith, Jaspars, Kamp, Milward, Pinkal, Poesio, Pulman, Briscoe, Maier &
Konrad 1996). Given the poor human performance on the harder cases for
these test sets, we should expect superhuman performance for our automated
reasoning systems.

This, of course, presupposes a model of word sense disambiguation to avoid
fallacious arguments by equivocation like the following.

1. Exciting books are rare.

2. Rare books are expensive.

3. Exciting books are expensive.

This seems like a valid syllogism, but it uses “rare” in the sense of “few and
far between” in the first sentence and in the sense of “precious, valuable” in
the second. The following example is similar.

1. Nothing is better than cold beer.

2. Warm beer is better than nothing.

3. Warm beer is better than cold beer.

Here, the first sentence can be paraphrased as something like “there is noth-
ing which is better to drink than cold beer” whereas the second can be para-
phrased as “it is better to have a warm beer to drink and it is to have nothing
to drink”. From the logical point of view, this is more a case of the scope of
the negation over an elliptical “to have/drink”.

In sum, logic by design models correct reasoning, and though it is possible
to argue how well this fits with the understanding of the typical person, a
system developed for natural language understanding should have a system
for correct reasoning at least as a component.

3This last item is only necessary because Artistotle presupposes for every ‘all A are B’
hypothesis that there exists an A.

4Dickstein (1978) reports 27.3% correct responses to this type of syllogism in a first
experiment, and 5.3% in a second. Galotti, Baron & Sabini (1986) separated their subjects
by performance on an initial syllogism test into a top, middle and bottom third (classified
respectively as ‘expert’, ‘good’ and ‘poor’ reasoners). For this type of syllogism, they report
29% correct for ‘expert’ reasoners, 13% for ‘good’ reasoners, and 0% for ‘poor’ ones

5‘The correct conclusion for this syllogisms is ‘Some of the chemists are not artists’.

4



Precursors of type-logical grammars

1.2 Precursors of type-logical grammars

Let’s make our talk about using logic for natural language syntax more con-
crete. Before talking about type-logical grammars, we will first look at some
of their precursors, which already introduce some of the standard ingredients
of type-logical grammars.

Ajdukiewicz (1935) and Bar-Hillel (1953) are generally seen as the earliest
references in categorial (but not yet type-logical) grammar. This precursor
of type-logical grammar is called AB grammar (after the two authors) and
sometimes also classical categorial grammar (classical in the sense of tradi-
tional rather than as the contrast between classical and intuitionistic logic).

Formulas of the AB grammars are inductively defined. The atomic formu-
las are

n for common nouns like “book” and “student”

np for noun phrases like “John” and “the book”

s for sentences like “It rained” and “John read the book”

pp for prepositional phrases like “by John” and “in the book”

and possibly a few others, though generally these four atomic formulas are
used. It is possible to add some more detail to the formulas, for example by
distinguishing between ppby and ppin (to distinguish between prepositional
phrases headed by “by” and “in” respectively), or between sdecl and synq (to
distinguish between a declarative sentence and a yes-no question).

Given two formulas A and B (atomic or complex), we can form formulas
A/B (pronounced A over B) and B\A (pronounced B under A)6.

A formula A/B is looking to its right for an expression of type B (its
argument) to form an expression of type A (its result). For example, when
we assign the word “the” the formula np/n we indicate it combines with an
expression of type n to form an expression of type np, that is, a noun phrase.
Therefore, under these assignments “the student” corresponds to np/n,n, and
according to the meaning of “/”, these formulas combine into an expression
of type np.

Similarly, a formula B\A is looking to its left for an expression of type B
(its argument) to form an expression of type A (its result). For example, when
we assign the word “slept” the formula np\s, we indicate it combines with
an expression of type np to its left to form an expression of type s, that is,
a sentence. Under these assignments “the student slept”, with “the student”
analysed as np as above, corresponds to np,np\s, which is a sentence s under
the meaning of “\”

AB grammars have the following two simplification rules, which are simply
a translation of the intuitions behind the connectives into a formal system we
can use for calculations of grammaticality.

6Ajdukiewicz (1935) does not distinguish between the leftward looking and the right-
ward looking implication. The notation used here was introduced by Lambek (1958) and
was adopted by Bar-Hillel in his later work (Bar-Hillel 1964).
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A/B B

A
[/]

B B\A
A

[\]

Using these rules, we can show that “the student slept” is a valid sentence
as follows (the English words are written above the given formulas using a
“Lex” rule).

the
np/n

Lex
student

n
Lex

np
/

slept

np\s Lex

s
\

This simply amounts to making our previous intuitions precise.

1.3 Lambek calculus and type-logical grammars

Historically, Lambek (1958) initiated type-logical grammars: he extended the
earlier categorial grammars of Ajdukiewicz (1935) and Bar-Hillel (1964) into
a full logic, which he called the Syntactic Calculus but which is commonly
referred to as the Lambek calculus.

With respect to the formulas, the Lambek calculus does not represent a
large shift with respect to AB grammars: while Lambek extended the formulas
by adding the product — a formula A•B corresponds to the concatenation of
an expression of type A to an expression of type B — the product connective
has little (if any) concrete linguistic applications in Lambek grammars. It is
the connective which corresponds to the comma symbol “,” in the antecedent.
In other words, the sequence of formulas np/n,n corresponds to the single
formula (np/n) • n.

The main shift of the Lambek calculus is not in the formulas, but in
the rules. From the point of natural deduction proofs, AB grammars have
only rules of use (elimination rules, which remove a connective; that is, an
occurrence of a connective in the premisses of the rule application is eliminated
from the conclusion of the rule) but not rules of proof (introduction rules,
which introduce a connective; that is the conclusion of the rule contains an
occurrence of a connective which didn’t appear in any of the premisses).

Table 1.1 presents the natural deduction rules for the Lambek calculus. In
the rules, Γ, Γ′ and ∆ correspond to sequences A1, . . . , An of formulas. The
/I and \I rules have the condition that Γ is not the empty sequence (for the
other rules, the sequences are allowed to be empty). This condition on the
/I and \I rules has the net effect of disallowing derivations with an empty
antecedent. For example ` n/n is not a theorem.

1.3.1 The Lambek calculus and Lambek grammars

The difference between the Lambek calculus and Lambek grammars is only a
small step: the addition of a lexicon mapping words of the language we want
to model to sets of Lambek calculus formulas.
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Lambek calculus and type-logical grammars

∆ ` A •B Γ, A,B,Γ′ ` C
Γ,∆,Γ′ ` C •E Γ ` A ∆ ` B

Γ,∆ ` A •B •I

Γ ` A/B ∆ ` B
Γ,∆ ` A /E

Γ, B ` A
Γ ` A/B

/I

Γ ` B ∆ ` B\A
Γ,∆ ` A \E

B,Γ ` A
Γ ` B\A \I

Table 1.1: Natural deduction for L

Definition 1.1 A Lambek grammar is a tuple 〈Σ,Lex , goal〉 where

1. Σ is the set of words in the language

2. the lexicon Lex , is a function from w ∈ Σ to a (non-empty) set of
Lambek calculus formulas

3. goal is the set of goal formulas

Most authors choose the singleton set {s} for the set of goal formulas g.
This is of course fine from the point of view of formal language theory. How-
ever, when we want to model the syntax-semantics interface of different types
of expressions — such as declarative sentences, imperatives, yes/no questions,
wh questions, etc. — it seems a priori desirable to allow for different types of
expressions, with different syntactic distributions but also with (potentially)
different meanings7.

In practice, we rarely specify Lambek grammars (and type-logical gram-
mars) in such a formal way. Most of the time, we simply specify the lexicon
and leave Σ implicit (as the domain of the Lex function; in other words, Σ is
the set of those w such that Lex (w) is defined and non-empty), and similarly
goal is the set of succedent formulas for our given set of examples.

Definition 1.2 Given a Lambek grammar 〈Σ,Lex , goal〉, a sentence w1, . . . , wn
is grammatical if for all 1 ≤ i ≤ n, wi ∈ Σ, there is an Ai ∈ Lex (wi), there
is a C ∈ goal , such that A1, . . . , An ` C is a Lambek calculus theorem. A
sentence is ungrammatical otherwise.

In other words, a sentence is grammatical whenever we can assign to each
of its words a formula from the lexicon, and the sequence of formulas corre-
sponding to the sequence of words is a derivable statement for one of the goal
formulas. For Lambek grammars, and type-logical grammars in general, the
notion of grammaticality and derivability coincide.

We say a grammar overgenerates whenever:

7In formal language theory, we generally treat multiple goal formulas g1, . . . , gn by
adding n rewrite rules gi → s (for 1 ≤ i ≤ n). However, in type-logical grammars we
disallow (or at least avoid as much as possible) such non-logical axioms.
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1. Introduction

1. it allows us to derive ungrammatical sentences, or

2. when it generates an unavailable reading for a grammatical sentence
(that is, although the sentence may be grammatical, the grammar as-
signs it an incorrect semantic interpretation).

A grammar undergenerates whenever:

1. it fails to derive grammatical sentences, or

2. it fails to generate an available reading for a sentence it derives (that is,
it fails to generate at least one of the possible meanings of a sentence).

The notions of undergeneration and overgeneration have both a syntactic
aspect (the items 1 above, generating all and only the right sentences) and a
semantic aspect (the items 2 above, generating all and only the right meanings
for these sentences). When we want to be fully precise, we will sometimes
talk about syntactic and semantic under- and overgeneration to distinguish
between the two cases.

Not all cases of overgeneration and undergeneration are equally grave: as
Lambek (1961) already notes, it is hard to rule out sentences like (1) and (2)
below as ungrammatical while at the same time accepting sentences like (3)
and (4).

(1) John works today today.

(2) John works yesterday today.

(3) John works today at lunch.

(4) John works at lunch today.

We therefore generally choose to accept all the sentences (1) to (4) as gram-
matical, and explain the oddness of sentences (1) and (2) by appealing to
semantic/pragmatic notations: the second “today” in (1) is semantically su-
perfluous, whereas the combination of “yesterday” and “today” in sentence (2)
is semantically contradictory.

The general point here is that we are willing to accept some types of
overgeneration provided that:

1. we can make an appeal to an alternative mechnanism for ruling out
these cases (typically one of semantics, pragmatics or processing), and

2. we make a trade-off between the added grammar complexity of treating
the phenomenon versus the seriousness of the overgeneration, and judge
that the simplicity of the grammar is more important.

A simple Lambek calculus lexicon is shown in Table 1.2. I have adopted
the standard convention in type-logical grammars of not using set notation for
the lexicon, but instead listing multiple lexical entries for a word separately.
This corresponds to treating Lex as a non-deterministic function rather than
as a set-valued function.

8



Lambek calculus and type-logical grammars

lex(Alyssa) = np lex(ran) = np\s

lex(Emory) = np lex(slept) = np\s

lex(logic) = np lex(loves) = (np\s)/np

lex(the) = np/n lex(aced) = (np\s)/np

lex(difficult) = n/n lex(passionately) = (np\s)\(np\s)

lex(erratic) = n/n lex(during) = ((np\s)\(np\s))/np

lex(student) = n lex(everyone) = s/(np\s)

lex(exam) = n lex(someone) = (s/np)\s

lex(who) = (n\n)/(np\s) lex(every) = (s/(np\s))/n

lex(whom) = (n\n)/(s/np) lex(some) = ((s/np)\s)/n

Table 1.2: Lambek calculus lexicon

Proper names, such as “Alyssa” and “Emory” are assigned the category
np. Common nouns, such as “student” and “exam” are assigned the cate-
gory n. Adjectives, such as “difficult” or “erratic” are not assigned a basic
syntactic category but rather the category n/n, indicating they are looking
for a common noun to their right to form a new common noun, so we pre-
dict that both “difficult exam” and “exam” can be assigned category n. For
more complex entries, “someone” is looking to its right for a verb phrase to
produce a sentence, where np\s is the Lambek calculus equivalent of verb
phrase, whereas “whom” is first looking to its right for a sentence which is
itself missing a noun phrase to its right, and then to its left for a noun.

Given the lexicon of Table 1.2, we can already derive some fairly complex
sentences, such as the following, and, as we will see in the next section, obtain
the correct semantics.

(5) Every student aced some exam.

(6) The student who slept during the exam loves Alyssa.

One of the two derivations of Sentence (5) is shown in Figure 1.1. To
improve readability, the figure uses a “sugared” notation: instead of writing
the lexical hypothesis corresponding to “exam” as n ` n, we have written it as
exam ` n. The withdrawn np’s corresponding to the object and the subject
are given a labels p0 and q0 respectively; the introduction rules are coindexed
with the withdrawn hypotheses, even though this information can be inferred
from the rule instantiation.

We can always uniquely reconstruct the antecedent from the labels. For
example, the sugared statement “p0 aced q0 ` s” in the proof corresponds to
np, (np\s)/np, np ` s.

Although it is easy to verify that the proof of Figure 1.1 has correctly

9



1. Introduction

every ` (s/(np\s))/n student ` n

every student ` s/(np\s)
/E

[p0 ` np]2
aced ` (np\s)/np [q0 ` np]1

aced q0 ` np\s
/E

p0 aced q0 ` s
\E

p0 aced ` s/np
/I1

some ` ((s/np)\s)/n exam ` n

some exam ` (s/np)\s
/E

p0 aced some exam ` s
\E

aced some exam ` np\s
\I2

every student aced some exam ` s
/E

Figure 1.1: “Every student aced some exam” with the subject wide scope
reading.

∆ ` A⊗B Γ, A,B ` C
Γ,∆ ` C ⊗E

Γ ` A ∆ ` B
Γ,∆ ` A⊗B ⊗I

Γ ` B ∆ ` B( A
Γ,∆ ` A ( E

Γ, B ` A
Γ ` B( A

( I

Table 1.3: Natural deduction for LP

applied the rules of the Lambek calculus, finding such a proof from scratch
may seem a bit complicated (the key steps at the beginning of the proof
involve introducing two np hypotheses and then deriving s/np to allow the
object quantifier to take narrow scope). We will defer the question “given
a statement Γ ` C, how do we decide whether or not it is derivable?” to
Chapter 3. In what follows, we will discuss how this proof corresponds to the
following logical formula.

∀x.[student(x)⇒ ∃y.[exam(y) ∧ ace(x, y)]]

1.3.2 Deep structure and semantics

The deep structure of an expression is an intermediate structure which allows
us to compute the meaning. The term “deep structure” was introduced in
early generative syntax, but has fallen out of favour since. In spite of the fact
that authors working with type-logical grammars have chosen to study many
different logics, there seems to be a generally agreed upon deep structure,
which I will refer to as the standard type-logical deep structure.

The deep structure of a type-logical derivation is a homomorphism from
proofs in the logic to proofs in the Lambek-van Benthem calculus LP. Since
the advent of linear logic, this logic is better known as (multiplicative) intu-
itionistic linear logic (MILL). The natural deduction rules for LP are shown
in Table 1.3. The main difference with natural deduction for the Lambek
calculus is that antecedents are now multisets instead of lists (in other words,
multiplicative linear logic is a commutative logic, whereas the Lambek calculus
is a non-commutative one). Under commutativity, the two Lambek calculus
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np( s
( E

s
( E

np( s
( I1

n( ((np( s)( s) n

(np( s)( s
( E

s
( E

np( s
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s
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Figure 1.2: Deep structure of the derivation of Figure 1.1.

implications A/B and B\A become indistinguishable, and there is therefore
only a single implication B( A in multiplicative linear logic.

For the Lambek calculus, specifying the homomorphism to multiplicative
intuitionistic linear logic is easy: we replace the two implications ‘\’ and ‘/’
by the linear implication ‘(’ and the product ‘•’ by the tensor ‘⊗’. In a
statement Γ ` C, Γ is now a multiset of formulas instead of a sequence. In
other words, the sequent comma ‘,’ is now associative, commutative instead
of associative, non-commutative. For the proof of Figure 1.1 of the previous
section, this mapping gives the proof shown in Figure 1.2.

We have kept the order of the premisses of the rules the same as in Fig-
ure 1.1 to allow for an easier comparison. This deep structure still uses the
same atomic formulas as the Lambek calculus, it just forgets about the order
of the formulas and therefore can no longer distinguish between the leftward
looking implication ‘\’ and the rightward looking implication ‘/’.

To reduce space, Figure 1.2 uses implicit antecedents. We can compute the
antecedents explicitly by taking the multiset of undischarged leaves at each
node. For example, the ( I rule discharging hypothesis one corresponds to
the following step with explicit antecedents (the np discharged at the second
( I rule is free in this subproof and therefore appears both in the premiss
and the conclusion of the rule).

np, np( (np( s), np ` s
np, np( (np( s) ` np( s

( I1

To obtain a semantics in the tradition of Montague (1974), we use the
following mapping from syntactic types to semantic types, using Montague’s
atomic types e (for entity) and t (for truth value).

np∗ = e

n∗ = e→ t

s∗ = t

(A( B)∗ = A∗ → B∗

Applying this mapping to the deep structure proof of Figure 1.2 produces
the intuitionistic proof and the corresponding (linear) lambda term as shown
in Figure 1.3

11
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z
(e→t)→(e→t)→t
0 ze→t

1

(z0 z1)(e→t)→t
→E

[xe]2
z
e→(e→t)
2 [ye]1

(z2 y)e→t →E

((z2 y)x)t
→E

λy.((z2 y)x)e→t
→I1

z
(e→t)→(e→t)→t
3 ze→t

4

(z3 z4)(e→t)→t
→E

((z3 z4)λy.((z2 y)x))t
→E

λx.((z3 z4)λy.((z2 y)x))e→t
→I2

((z0 z1) (λx.((z3 z4)λy.((z2 y)x))))t
→E

Figure 1.3: Intuitionistic proof and lambda term corresponding to the deep
structure of Figure 1.2.

The computed term corresponds to the derivational semantics of the proof.
To obtain the complete meaning, we need to substitute, for each of z0, . . . , z4,
the meaning assigned in the lexicon.

For example, “every” has syntactic type (s/(np\s))/n and its seman-
tic type is (e → t) → (e → t) → t. The corresponding lexical lambda
term of this type is λP e→t.λQe→t.(∀(λxe.((⇒ (P x))(Qx)))), with ‘∀’ a con-
stant of type (e → t) → t and ‘⇒’ a constant of type t → (t → t). In
the more familiar Montague formulation, this lexical term corresponds to
λP e→t.λQe→t.∀x.[(P x) ⇒ (Qx)], where we can see the formula in higher-
order logic we are constructing more clearly. Although the derivational se-
mantics is a linear lambda term, the lexical term assigned to “every” is not,
since the variable x has two bound occurrences.

The formula assigned to “some” has the same semantic type but a differ-
ent term λP e→t.λQe→t.(∃(λxe.((∧(P x))(Qx)))), corresponding to the more
familiar λP e→t.λQe→t.∃x.[(P x) ∧ (Qx)]).

The other words are simple, “exam” is assigned exame→t, “student” is
assigned studente→t, and “aced” is assigned acee→(e→t) (abstracting away
from the past tense information for the moment).

So to compute the meaning, we start with the derivational semantics,
repeated below.

((z0 z1) (λx.((z3 z4)λy.((z2 y)x))))

Then we substitute the lexical meanings, for z0, . . . , z4.

z0 := λP e→t.λQe→t.(∀(λxe.((⇒ (P x))(Qx))))

z1 := studente→t

z2 := acee→(e→t)

z3 := λP e→t.λQe→t.(∃(λxe.((∧(P x))(Qx))))

z4 := exame→t

12
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This produces the following lambda term.

((λP e→t.λQe→t.(∀(λxe.((⇒ (P x))(Qx)))) studente→t)

(λx.((λP e→t.λQe→t.(∃(λxe.((∧(P x))(Qx)))) exame→t)

λy.((acee→(e→t) y)x))))

Finally, when we normalise this lambda term, we obtain the following
semantics for this sentence.

(∀(λxe.((⇒ (studente→t x))(∃(λye.((∧(exame→t y))((acee→(e→t) y)x)))))))

This lambda term represents the following more readable first-order logic
formula8.

∀x.[student(x)⇒ ∃y.[exam(y) ∧ ace(x, y)]]

Proofs in the Lambek calculus, and in type-logical grammars are subsets
of the proofs in intuitionistic (linear) logic and these proofs are compatible
with formal semantics in the tradition initiated by Montague (1974).

For the example in this section, we have calculated the semantics of a sim-
ple example in ‘slow motion’: many authors assign a lambda term directly to
a proof in their type-logical grammar, leaving the translation to intuitionistic
linear logic implicit.

Given a semantic analysis without a corresponding syntactic proof, we can
try to reverse engineer the syntactic proof. For example, suppose we want to
assign the reflexive “himself” the lambda term λR(e→e→t)λxe.((Rx)x), that
is, a term of type (e→ e→ t)→ e→ t. Then, using some syntactic reasoning
to eliminate implausible candidates like (np( n) ( n, the only reasonable
deep structure formula is (np ( np ( s) ( (np ( s) and, reasoning a bit
further about which of the implications is left and right, we quickly end up
with the quite reasonable (though far from perfect) Lambek calculus formula
((np\s)/np)\(np\s).

1.4 Some applications

In spite of its simplicity, the Lambek calculus already gives a fairly reason-
able account of a number of non-trivial phenomena on the syntax-semantics
interface. Unlike many other formalisms, these accounts follow directly from
the logical setup of the Lambek calculus and require no special stipulations.
As we will see in the next section, the Lambek calculus also has a number
of limitations and a main research goal for type-logical grammars has been
to overcome these limitations while sacrificing neither the simplicity nor the
good metatheoretical properties of the logical foundations.

In Section 1.3.1, we have already seen some examples of quantification.
While limited to peripheral cases, these are still a classic example of how
Lambek grammars generate the string-meaning relation with relatively little
stipulations. Notably, there is no special rule for quantifier scope.

8We have used the standard convention in Montague grammar of writing (p x) as p(x)
and ((p y)x) as p(x, y), for a predicate symbol p.
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1.4.1 Relativisers and extraction

The treatment of relative pronouns and wh questions is, at least when they oc-
cur in peripheral positions, one of the appealing points of Lambek grammars.
For example, we can generate sentences like the following without problems.

(7) The man who just left forgot to pay.

(8) Where did he go?

(9) Irene found the book which Ivan forgot.

The subject noun phrase of Sentence (7) is derived as follows.

the
np/n

Lex

man
n

Lex

who
(n\n)/(np\s) Lex

just

(np\s)/(np\s) Lex
left

np\s Lex

np\s
/E

n\n
/E

n
\E

np
/E

Sentence (8) is only slightly more complicated. For the atomic formulas, inf
indicates an infinitive, sq indicates a verb-first question sentence, whereas swhq
indicates a sentence starting with a wh question (some better treatment using
features should probably be used to avoid multiplying the atomic formulas like
this). The key word “where” is therefore looking to its right for a verb-initial
sentence which itself is missing a prepositional phrase at its rightmost edge.
The word “go” forms an infinitival phrase when combined with a prepositional
phrase and we can easily complete the proof after combining “go” with the
hypothetical pp of “where”. This gives the following proof.

where
swhq/(sq/pp)

Lex

did
(sq/inf)/np

Lex
he
np

Lex

sq/inf
/E

go

inf/pp
Lex

[pp]1

inf
/E

sq
/E

sq/pp
/I1

swhq
/E

Finally, Sentence (9) is derived in a similar manner. The word “which” licenses
the hypothetical noun phrase which is the object of “forgot”, providing the
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following proof (only the proof of the object np is shown).

the
np/n

Lex

book
n

Lex

which
(n\n)/(s/np)

Lex

Barry

np
Lex

forgot

(np\s)/np
Lex

[np]1

np\s
/E

s
\E

s/np
/I1

n\n
/E

n
\E

np
/E

There are a few thing worth mentioning about the analyses above. First, we
analyse extraction by just choosing the appropriate formula for the relevant
words (the wh words “who”, “where” and “which”) keeping all other lexical
assignments the same as they would be for declarative (or in the case of
Sentence (8) verb-initial) sentences. There is no need to stipulate extraction
or movement principles, we simply use the available logical rules. A second
point is that these analyses automatically get the meaning right. That is, the
lambda terms which correspond to the deep structure linear logic proofs can
be combined with lexical lambda terms to obtain the standard meaning for
these sentences in formal semantics9.

1.4.2 Right node raising

Where for the previous examples of quantifiers and extraction our analysis
was somewhat limited because of the limitation to peripheral extraction in
the Lambek calculus (something which will be addressed in several different
ways in the next chapter), there are some other examples where the limitation
to the periphery works in our favour. Examples like Sentence (10) are called
right node raising in the literature.

(10) Howard loved but Geoffrey hated “Syntactic Structures”.

The key property of this sentence we want to capture in our analysis is that
the noun phrase “Syntactic Structures” is the object both of the verb “loved”
and of the verb “hated”. In other words, we want the meaning of the above
sentence to be roughly equivalent to “Howard loved Syntactic Structures but
Geoffrey hated Syntactic Structures”.

A problem with this type of coordination in many other formalisms is
that the two coordinated phrases “Howard loved” and “Geoffrey hated” are
not constituents (right node raising is an instance of so-called non-constituent
coordination), and these formalisms therefore need to appeal to special mech-
anisms to ensure the grammaticality of such sentences10.

9There is some debate about the appropriate meaning for questions, but the lambda
term obtained for Sentence (8) is mostly agnostic with respect to these debates.

10The term ‘right node raising’ actually refers to one such operation.
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However in the Lambek calculus, deriving Sentence (10) is relatively sim-
ple, by just assigning “and” one of its standard categories (X\X)/X, with
X = s/np we obtain the following proof.

Howard

np
Lex

loved

(np\s)/np
Lex

[np]1

np\s
/E

s
\E

s/np
/I1

but

((s/np)\(s/np))/(s/np)
Lex

Geoffrey

np
Lex

hated

(np\s)/np
Lex

[np]2

np\s
/E

s
\E

s/np
/I2

(s/np)\(s/np)
/E

s/np
\E

Syntactic Structures

np
Lex

s
/E

1.4.3 Argument cluster coordination

A slightly more complicated example is so-called argument cluster coordina-
tion. These are examples like the following.

(11) Terry gave Robin flowers and Sue a book.

This sentences should mean the same as “Terry gave Robin flowers and Terry
gave Sue a book”. One solution is to use (X\X)/X with X = np • np. How-
ever, to get the meaning right it is more convenient to use X = ((s/np)/np)\s
(in terms of the typed lambda calculus this amounts to defining pairs using
implication). This gives the following proof.

Terry

np
Lex

gave

((np\s)/np)/np
Lex

[np]1

(np\s)/np
/E

[np]2

np\s
/E

s
\E

s/np
/I2

(s/np)/np
/I1

[(s/np)/np]3
Robin

np
Lex

s/np
/E

flowers

np
Lex

s
\E

((s/np)/np)\s
\I3

and

(X\X)/X
Lex

[(s/np)/np]4
Sue

np
Lex

s/np
/E

a book

(s/np)\s Lex

s
\E

((s/np)/np)\s
\I4

X\X
/E

((s/np)/np)\s
\E

s
\E

Similarly, we can conjoin a combination of a noun phrase and an adverb.

(12) Captain Jack served lobster yesterday and bananafish today.

The Lambek calculus treats the above sentence correctly, since both “lobster
yesterday” and “bananafish today”, are antecedents of the form np, s\s, from
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which we can derive ((np\s)/np)\(np\s)11).

[np]1
[(np\s)/np]2

lobster
np

Lex

np\s
/E

s
\E

yesterday

s\s Lex

s
\E

np\s
\I1

((np\s)/np)\(np\s)
\I2

What we have seen with these examples is that many interesting linguistic
phenomena achieve an at least fairly reasonable analysis in Lambek gram-
mars. Moreover, these analyses follow from simple lexical assignments and
give a good account of the meaning of the phrases. All without stipulating
any construction specific rules (no gap/trace principles, move conditions, or
anything).

1.5 Problems and limitations

We spent the last section giving an overview of some non-trivial facts about
the syntax-semantics interface of natural language which Lambek grammars
handle at least reasonably well. However, upon closer examination we find
that there are quite a few problems with the Lambek calculus as well.

1.5.1 Formal language

The Lambek calculus generates only context-free languages (Pentus 1995).
There is good evidence that at least some constructions in natural language
require a slightly larger class of languages (Shieber 1985). One influential
proposal for such a larger class of languages are the mildly context-sensitive
languages (Joshi 1985), characterised by the following properties:

• contains the context-free languages,

• limited cross-serial dependencies; prototypical mildly context-sensitive
patterns outside of the context-free class include patterns such as the
copy language {ww|w ∈ (a|b)∗}, multiple counting dependencies anbncn

and ‘crossed’ counting dependencies anbmcndm,

• semilinearity (a language is semilinear iff there exists a regular language
to which it is equivalent up to permutation),

• polynomial fixed recognition.

11This assignment overgenerates, since it allows for “#Captain Jack served lobster yes-
terday and bananafish” as well. I believe a more detailed treatment of coordination would
need to take into account discourse notions such as parallelism and contrast to accept and
reject these cases. For example, Asher & Lascarides (2003) argue that the acceptability of
a sentence with coordination depends on the similarity of the conjoined phrases.
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The last two items are sometimes stated as the weaker condition ‘con-
stant growth’ instead of semilinearity and the stronger condition of polynomial
parsing instead of polynomial fixed recognition. Since all other properties are
properties of formal languages, I prefer the formal language theoretic notion
of polynomial fixed recognition.

The class of mildly context-sensitive languages is a very robust class: many
independently proposed grammars formalisms turn out to fall into this class
(Joshi, Shanker & Weir 1991, Vijay-Shanker & Weir 1994). There is some
further structure in the class of mildly context-sensitive languages: a first
parameter gives a measure on the number of counting dependencies we can
handle (for example, the language anbncndnenfn, with six counting depen-
dencies, requires more a complex formalism than the language anbncndn with
four counting dependencies; context-free languages already handle two count-
ing dependencies, of course), a second parameter is whether the language
class is well-nested or not. The class of languages generated by tree adjoin-
ing grammars (linear indexed grammars and combinatory categorial gram-
mars generate the same class of languages) is the smallest class of the mildly
context-sensitive languages: it is well-nested and handles counting dependen-
cies of up to four.

1.5.2 Syntax-semantics interface

We are not just interested in generating the right string language for a given
natural language, we also want to assign grammatical strings a representation
of their possible meanings. The Lambek calculus fails to do this even for
elementary quantifier scope and medial extraction facts.

In this section, we will briefly look at some of the types of phenomena which
have interested researchers in type-logical grammars, and to which different
solutions have been proposed. Since a finite list of cases can always be treated
by some additional lexical type assignments, we will be interested only in
robust solutions, that is solutions which generalise beyond the listed examples
to more complex cases, and ideally to different phenomena.

As we have seen, the Lambek calculus gives a good and simple account of
phenomena such as right node raising.

(13) Howard loved but Geoffrey hated “Syntactic Structures”.

Example (13), repeated from Example (10), shows right node raising in the
Lambek calculus: assuming assignments of (np\s)/np to the transitive verbs
and np to “Howard” and “Geoffrey”, L derives “Howard loved” and “Geoffrey
hated” as expressions of type s/np. Although this works correctly, as we have
seen in Section 1.4, it crucially depends on the presence of associativity. For
example, NL no longer allows us to derive sentence (10) unless we add a
second lexical assignment np \ (s / np) to the transitive verbs.

18



Problems and limitations

Medial and other types of extraction

Extraction from non-peripheral positions, as shown in Example (14) below,
shows that the Lambek calculus treatment of extraction is insufficiently gen-
eral.

(14) Peter bought the book which John read yesterday.

Although the sentence above would be derivable without the sentence-final
adverb “yesterday”, again since “John read” is an expression of type s / np,
the presence of “yesterday” blocks this derivation. In other words, the deep
structure derivation looks as follows.

John

np
Lex

read

np( (np( s)
Lex

[np]1

np( s
( E

s
( E

yesterday

s( s
Lex

s
( E

np( s
( I1

Replacing all “easy” linear logic implications “(” by the corresponding
Lambek calculus implications (either “/” or “\” depending on whether the
corresponding argument is to the right or to the left) gives us the following.

John

np
Lex

read

(np\s)/np
Lex

[np]1

np\s ( E

s
( E

yesterday

s\s Lex

s
( E

np( s
( I1

The “( I” rule can not be turned into a Lambek calculus introduction
rule, since the noun phrase hypothesis does not occur in a peripheral position.

Extraction is still more complicated than this. In theoretical linguistics,
there are some classic principles such as the so-called coordinate structure
constraint and the across-the-board exception (Ross 1969) (Sag, Wasow &
Bender 1999, Section 15.6). As usual, an asterisk ‘*’ before a sentence denotes
ungrammaticality.

(15) *Peter bough the book which John read “Syntactic Structures” and
Mindy liked.

Examples like (15), and related examples, were first discussed as problems for
the (associative) Lambek calculus by Lambek (1961, p. 167). The problem
with this ungrammatical sentence is that “John read Syntactic Structures
and Mindy liked” is a sentence missing a noun phrase (at its right edge)
and can therefore combine with “which” given its standard Lambek calculus
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assignment (n \ n) / (s / np). The same derivability pattern which helped us
for Sentence (10) leads to overgeneration for Sentence (15).

In mainstream linguistics, the coordinate structure constraint disallows
extraction from coordinations and therefore blocks examples like (15). This
constraint states that extraction out of coordinate structures (that is, phrases
of the form “p1 and/or p2”) is not allowed. It also blocks examples like the
following.

(16) a. *This is the student which the principal suspended []np and Barry.
b. *This is the student which the principal suspended Barry and

[]np.

Of these examples, only Sentence (16-b) is a problem for the Lambek cal-
culus, since the missing noun phrase occurs at the right edge, just like for
Sentence (15). However, once we add an operator allowing medial extraction
to our logic, we need to be careful to disallow all of the examples (15)-(16).

The coordinate structure constraint has a standard exception: when all the
coordinated constituents are missing the same material, then the combination
of coordination and extraction is perfectly fine.

(17) This is the student which the principal suspended []np this morning
and the teacher defended []np this afternoon.

In Sentence (17) above, two sentences with a medial noun phrase gap are
conjoined. In the deep structure, this is just a standard coordination of two
np( s expressions.

The reader who thinks by this point that we are starting to have rather
many stipulated constraints with respect to extraction and coordination, and
who would prefer that these facts would all fall out from more general prin-
ciples is thinking like a type-logical grammarian (or, more generally, a formal
linguist, since the goal to derive these constraints from more fundamental
principles has played an important role in nearly all grammatical theories,
not just type-logical grammars). The challenge in type-logical grammars is
therefore to ensure that our treatment of coordination and extraction (what-
ever they will turn out to be) allows us to generate all and only the right
patterns when they interact, but without using any extra-logical principles.

Quantifier scope

Example (18) below illustrates that the Lambek calculus has problems with
quantifiers in medial position taking wide scope.

(18) John believes someone left.

This is one of the classic examples in semantics (and philosophy of language).
Example (18) has two readings: for the the first, called the “de dicto” reading,
the verb “believes” has wider scope than the quantifier “someone” (this can be
true when John has heard to door slam and concludes from this weak evidence
that someone left; this reading doesn’t commit the speaker to believing anyone
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left), for the second reading, called the “de re” reading, there is a specific
person, say Peter, whom John believes has left (this does commit the speaker
to believing someone has left).

The narrow scope reading for “someone” is obtained from the following
deep structure.

John

np
Lex

believes

s( (np( s)
Lex

someone

(np( s)( s
Lex

left

np( s
Lex

s
( E

np( s
( E

s
( E

For the proof above, it is easy to replace the different occurrences of the
linear logic implication ‘(’ by the Lambek slashes ‘\’ and ‘/’ in order to obtain
a Lambek calculus proof. However, the second reading has the following deep
structure.

someone

(np( s)( s
Lex

John

np
Lex

believes

s( (np( s)
Lex

[np]1
left

np( s
Lex

s
( E

np( s
( E

s
( E

np( s
( I1

s
( E

This deep structure again has a noun phrase in non-peripheral position,
and the Lambek calculus lacks a way of withdrawing the np from the middle
of the sentence (as for the medial extraction case) but also of ‘moving’ the
quantifier “someone” back to the place of the withdrawn noun phrases.

The data are again more complicated (Szabolcsi 2010): while it is cer-
tainly a relatively good first approximation that quantifiers can scope from
anywhere, just like with extraction there are many restrictions. Some of these
restrictions are similar to the ones of extraction. For example, we disallow
some quantifiers in embedded clauses to takes scope outside of their clause,
and therefore Sentence (19) can not mean that for each student there is a dif-
ferent professor who said this student was lazy. The same logical mechanisms
used to exclude extraction cases like (15) and (16) would ideally block this
unavailable reading as well.

(19) A professor said all students are lazy.

Then there are general restriction as to which type of quantifier can take
scope over which other one, or over negation. So for Sentence (20-a), there
is both a ¬∃ reading (where Kim didn’t pass any test) and a ∃¬ reading
(where there is a test which Kim didn’t pass, but possibly a few others she
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did pass). Sentence (20-b) has only the ¬∃ reading12 (equivalent to the ¬∃
reading of (20-a)).

(20) a. Kim didn’t pass a test.
b. Kim didn’t pass any test.

Dutch verb clusters

Another classic example of a problem with the Lambek calculus is the treat-
ment of Dutch verb clusters (Moortgat & Oehrle 1994, Oehrle 2011), illus-
trated by sentences such as the following.

(21) (dat) Jan Marie de nijlpaarden zag voeren.

(22) (dat) Jan Henk Marie de nijlpaarden zag helpen voeren.

These sentences exhibit the well-known crossed dependencies: in (22) “Henk”
is the object of “zag” (saw), “Marie” the object of “helpen” (help) and “de
nijlpaarden” (the hippopotami) the object of “voeren” (feed), as shown in the
deep structure below.

zag

np( (inf( (np( s))
Lex

Henk

np
Lex

inf( (np( s)
( E

Marie

np
Lex

helpen

np( (inf( inf)
Lex

inf( inf
( E

de nijlpaarden

np
Lex

voeren

np( inf
Lex

inf
( E

inf
( E

np( s
( E

Although Pullum & Gazdar (1982) show that such examples can be treated
by context-free grammars — and hence by the Lambek calculus — the analysis
of mildly context-sensitive formalisms is generally preferred, since it expresses
the desired dependencies between objects and verbs. For example, a fairly
direct translation of the grammar given by Pullum & Gazdar (1982) into a
Lambek grammar gives the following proof for Sentence (22).

Henk

np
Lex

Marie

np
Lex

de nijlpaarden

np
Lex

zag

np\(np\s) Lex

np\s
\E

helpen

(np\s)\(np\(np\s)) Lex

np\(np\s)
\E

np\s
\E

voeren

(np\s)\(np\(np\s)) Lex

np\(np\s)
\E

np\s
\E

The two analyses produce different lambda terms for their derivational se-
mantics, with the semantics of the derivation inspired by Pullum & Gazdar
(1982) shown as 1.1 and the semantics of the deep structure proof inspired by

12Negative polarity would be one possible explanation. Negative polarity items are words
like “any” but also expressions like “lift a finger” which are required to be in the scope a a
negation-like operator. This is an important topic in the syntax-semantics which a footnote
can not do justice, but about which I will have very little to say.
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the mildly context-sensitive analysis shown as 1.2.

((voeren ((helpen (zag de nijlpaarden)) Marie)) Henk) (1.1)

((zag Henk) ((helpen Marie) (voeren de nijlpaarden))) (1.2)

An obvious advantage of deep structure 1.2 above is that we directly obtain
the correct semantics, whereas the Pullum and Gazdar analysis of 1.1 would
require us to abandon the simple connection to meaning and add a dedicated
‘Dutch verb cluster semantics’ component to the syntax-semantics interface.

Gapping, ellipsis, comparatives

A number of other interesting phenomena have been treated in the literature
on type-logical grammars. I will give only a brief analysis of a few of them
here, because they have been studied in a number of different type-logical
frameworks. The reader is referred to (Hendriks 1995a, Hendriks 1995b, Mor-
rill, Valent́ın & Fadda 2011, Kubota & Levine 2020) for more detailed analysis
of the phenomena involved. As usual, I will only present the phenomena from
the deep structure, linear logic point of view, since this is where most analy-
ses converge. We will see many of these examples again when we investigate
different proposals for the surface structure in type-logical grammars.

Gapping is exemplified by Sentence (23) below.

(23) John studies logic and Charles, phonetics.

From the semantic point of view this sentence has the same meaning as “John
studies logic and Charles studies phonetics”

Ellipsis is another large class of phenomena, but Sentence (24) shows a
simple example of verb phrase ellipsis.

(24) John left before Mary did.

This sentence has more or less the same meaning as “John left before Mary
left” and this is what we want our analysis to find.

A final example are comparatives, such as the following example.

(25) John bought more books than Mary ate bagels.

Sentence (25) means something like “The number of books John bought is
greater than the number of bagels Mary ate”).

Again the deep structure proofs in multiplicative linear logic for these
sentences are fairly simple. For Sentence (23), the deep structure proof looks
as follows (where tv is short for np( np( s and X is short for tv( s, that
is, (np( np( s)( s).
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In the proof, we derive both “John tv logic” and “Charles tv phonetics” as sen-
tences, then withdraw the two hypothetical transitive verbs, combine the two
sentences (missing transitive verbs) using “and”, and complete the derivation
by combining the resulting tv( s with the transitive verb “studies”.

In other words, we have analysed the apparent copying of the transitive
verb “studies” by coordinating two sentences missing a transitive verb. We
therefore end up with the standard coordination scheme, but of sentences
missing transitive verbs. To complete the analysis and obtain the right se-
mantics, we only need to add the lexical semantics λQλPλv.(P v) ∧ (Qv)
for “and”. Note that copying only happens at the level of the meaning: the
verb meaning v is copied in the semantic term to fill the role of the missing
transitive verb in both sentences.

Sentence (24) is analysed as follows. The formula vp abbreviates np( s.
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The above proof is slightly more complicated: we analyse “before Mary” as
a verb phrase missing two verb phrases, which is the argument that “did”
requires. After combining with “did”, we complete the proof by applying the
verb phrase “left” (produce a new verb phrase) and finally noun phrase “John”
to produce a sentence. Again, the lexical semantic term for “did” completes
the analysis. We use λPλv.(P v) v). Since P is the term corresponding to the
meaning of a verb phrase with two missing verb phrases (“vp before Mary vp”
in our case), and v is the meaning of the verb phrase (“left” in our case), this
copies the verb phrases meaning to the two places from which a vp has been
extracted. There is again no need for copying in the syntax, all the required
copying is done in the semantic term.

The final sentence is analysed as follows. In the proof, mf abbreviates
(gq( s)( (gq( cp)( s, with gq abbreviating n( (np( s)( s.
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In the proof, we have a sentence missing a generalised quantifier “John bought
gq books” and a complementiser phrase cp also missing a generalised quan-
tifier “than Mary ate gq bagels”. Both serve as arguments to “more” to
produce a sentence13. Completing the analysis requires providing the seman-
tics term. This is a bit more involved than it was for the other cases. Let
the term I be equal to λzλPλQ.(P z) ∧ (Qz), let the circumfix operator |.|
denote the term of type (e → t) → R (with R the real numbers, of some
standard approximation of them, such as floating point numbers), and let >
be the usual greater than operator. Then the term assigned to “more” is
λPλQ.|λx.(P (I x))| > |λy.(Q (I y))|, “than” is simply assigned the identity
function λx.x. Let’s take a closer look at what’s going on with the term
assigned to “more”. The abstractions over P and Q represent the two sen-
tences each missing a generalised quantifier. The generalised quantifier type is
(e→ t)→ (e→ t)→ t. That is, a function taking (the characteristic function
of) two sets as arguments to produce a truth value. For the first sentences
these functions are the set of books (with type n) and the set of things John
bought (with type np ( s), for the second the set of bagels and the set of
things Mary ate. In both cases, we want to take the intersection of these two
sets, then compare the number of items in both intersections. This is what
the term for “more” does: (Ix) takes the intersection of two sets (conjoining
them as properties of x). Since the term (Ix) is of the generalised quantifier
type, terms of this form can be the argument of P and Q, where they will
serve as the missing quantifier. We then count the number of x elements in
the first intersection and compare it to the y in the second intersection.

The linguistic phenomena described in this section give only a very partial
picture of the descriptive work done in the various type-logical frameworks,
and for which solutions have been proposed (for a more detailed treatment of
many more phenomena, I recommend Morrill 1994, Carpenter 1998, Kubota
& Levine 2020). In later chapters, we will see quite a few of these solution-
framework combinations. However, I hope this section has at least given
an idea of the many challenges addressed by type-logical grammars. It also
provides a sort of ‘checklist’ to evaluate and compare different formalisms.
This checklist will of course need to be expanded as more and more linguistic
phenomena are successfully treated.

13Some alternative analyses are possible here, using different ways to divide the anal-
ysis between “more” and “than”. Arguably, “more...than” should be analysed as a single
complex lexical entry. Kubota & Levine (2020, Section 8.2.2.1) give an analysis with a
lexical entry for “-er...than”, where “-er” is the comparative morpheme (transforming, for
example, “good-er” to “better”).
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1. Introduction

1.6 Roadmap

Even though the Lambek calculus is a very simple system which gives a basic
account of several interesting phenomena on the syntax-semantics interface,
we want a logical system which solves the problems with Lambek grammars
while at the same time not making the logic overly complicated. We want
a logic which permits a better treatment of extraction, quantifier scope and
many other phenomena, as well as of the correct interactions between all these
phenomena.

From the eighties onwards, many formalisms have been proposed often
with the intention to solve all or most of the problems of the Lambek calcu-
lus indicated in Section 1.5. Chapter 2 will provide a brief overview of these
different calculi. Given that there are many competing formalisms, the cur-
rent landscape of different type-logical grammars may look confusing. One of
the main goals of this book will be to categorise and compare these different
formalisms. For this comparison, I will propose two general frameworks, us-
ing a proof-theoretic innovation introduced for linear logic called proof nets.
Chapter 3 will provide the necessary background on proof nets. One of the
main research questions of this book is how to adapt the proof nets of linear
logic to these different modern type-logical grammars, in a way which facili-
tates comparison between formalisms using what appear to be a priori rather
different logical primitives.

The first general framework for type-logical grammar I propose is first-
order multiplicative linear logic (Girard 1991). This is a simple, standard
fragment of linear logic. However, several type-logical grammars, including
Lambek grammars, lambda grammars, hybrid type-logical grammars, and a
large fragment of the Displacement calculus can be translated into first-order
linear logic. Fist-order linear logic will be the main topic of Chapter 4.

The second general framework is inspired by the interaction nets of Lafont
(1989) and the multimodal proof nets of Moot & Puite (2002). It is a proof net
framework based on graph rewriting, which captures all current multiplicative
type-logical grammar frameworks. These proof-nets-as-graph-rewriting will
be the main topic of Chapter 5.

Finally, although the formal properties of our logics are important, we
will be interested in theorem proving for these different formalisms. Theo-
rem proving is important in two different ways: firstly, it is important for the
grammar designer to test the predictions of his grammar. A number of theo-
rem provers for different type-logical grammars have been developed as part
of my research with this goal in mind (Moot 2015b, Moot 2015c, Moot 2017).
A second way this is important is in terms of applications to wide-coverage
semantics. Notably, I will be interested in generating logical meaning rep-
resentations for arbitrary French and Dutch text. While generating formal
representations of meaning is only a stepping stone to applications in natu-
ral language understanding, I believe it to be an important one. This last
question will occupy us in Chapter 6.
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2 Modern type-logical
grammars

We have seen in the previous chapter that the Lambek calculus gives a fairly
good account of a number of phenomena on the syntax-semantics interface,
but fails for many more sophisticated ones. As a result, many variants and
extensions of the Lambek calculus have been proposed. In this chapter, we
will briefly look at those variants of the Lambek calculus which stay fully in
the logical tradition initiated by Lambek (1958).

Large parts of this chapter have been taken from the forthcoming Stan-
ford Encyclopedia of Philosophy entry on type-logical grammars (Moortgat
& Moot 2021).

2.1 Multimodal type-logical grammars

One of the earliest extensions of the Lambek calculus were so-called mul-
timodal type-logical grammars. This idea can be traced back to Oehrle &
Zhang (1989) and to Moortgat & Morrill (1991). The basic idea is to have
multiple families of connectives. Given a set of modes I (decided by the
grammar writer), we have for each i ∈ I a family of connectives /i, •i and \i.
The Lambek calculus L is a special case where I is a singleton set (the same
holds for its non-associative variant NL, and its associative, commutative
variant LP). For a truly multimodal logic, there is a small set of modes, at
least two. In terms of structures, moving from the (associative, commutative)
Lambek-van Benthem calculus LP to the (associative) Lambek calculus L to
the non-associative Lambek calculus NL, and finally to multimodal categorial
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2. Modern type-logical grammars

∆ ` A •i B Γ[(A ◦i B)] ` C
Γ[∆] ` C

[•E] Γ ` A ∆ ` B
(Γ ◦i ∆) ` A •i B

[•I]

Γ ` A/iB ∆ ` B
(Γ ◦i ∆) ` A

[/E]
(Γ ◦i B) ` A

Γ ` A/iB
[/I]

Γ ` B ∆ ` B\iA
(Γ ◦i ∆) ` A

[\E]
(B ◦i Γ) ` A

Γ ` B\iA
[\I]

Table 2.1: Multimodal natural deduction rules

Γ[∆1 ◦a (∆2 ◦a ∆3)] ` C
Γ[(∆1 ◦a ∆2) ◦a ∆3] ` C

Ass1
Γ[(∆1 ◦a ∆2) ◦a ∆3] ` C
Γ[∆1 ◦a (∆2 ◦a ∆3)] ` C

Ass2

Γ[∆1 ◦a ∆2] ` C
Γ[∆1 ◦n ∆2] ` C

Ia,n

Table 2.2: The structural rules for associativity for mode a and inclusion
between modes a and n in a multimodal logic

grammars can be seen as follows1.

Logic Structural rules Structure
LP associativity, commutativity multiset
L associativity list
NL none binary tree
multimodal mode-specific labeled binary tree

That is, the structure of the antecedent becomes gradually more fine-
grained, adding linear order, hierarchical structure and finally labelling on the
nodes of the tree. For the natural deduction rules, this changes relatively little.
First, to make our antecedents more easily readable, we will write the binary
term constructor as an infix ◦i (for all modes i in the grammar). Compared
to using indexed parentheses (. . .)i this makes the mode information visible
locally at each branch, and allows us to omit outer brackets without loss of
information.

The natural deduction rules are shown in Table 2.1. In each rule, the
index i is shared between the connective and the structure which is created
or removed.

In their simplest form, a multimodal grammar has different modes with
different structural rules. For example, we can have a multimodal logic with
two modes n and a where n is a non-associative mode and a an associative
one.

1There is, of course, the possibility to add commutativity but not associativity, giving
the logic NLP.
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Γ[∆1 ◦2 (∆2 ◦1 ∆3)] ` C
Γ[(∆1 ◦2 ∆2) ◦1 ∆3] ` C MA

Γ[∆2 ◦2 (∆1 ◦1 ∆3)] ` C
Γ[∆1 ◦1 (∆2 ◦2 ∆3)] ` C MC

Table 2.3: The structural rules for mixed associativity and mixed commua-
tivity for modes 1 and 2

In such a logic, we have that a/ab ◦a bac ` a/ac but a/nb ◦n b/nc 0 a/nc.
This gives us fine-grained lexical control over when to allow associativity.
However, in such a setup, there are essentially two isolated logics, an associa-
tive one and a non-associative one and there is no possibility of communication
between the two. Interaction postulates are structural rules which mention
more than one distinct mode. The simplest type of interaction postulate
is an inclusion postulate, such as the inclusion between the associative and
non-associate mode shown in Table 2.22.

One influential type of structural rule are the so-called mixed associativity
and mixed commutativity rules of Moortgat & Oehrle (1994). Table 2.3 shows
these rules for a mode 1 and a mode 2.

The mixed commutativity rule provides an important step towards the
analysis of verb clusters in Dutch subordinate clauses. For example, it allows
us to derive “(dat) Marie boeken wil lezen” (that Marie wants to read books)
as follows.

Marie ` np

wil ` (np\1s)/1inf

boeken ` np lezen ` np\2inf

boeken ◦2 lezen ` inf
\E

wil ◦1 (boeken ◦2 lezen) ` np\s
/E

Marie ◦1 (wil ◦1 (boeken ◦2 lezen)) ` s
\E

Marie ◦1 (boeken ◦2 (wil ◦1 lezen)) ` s
MC

However, this analysis still needs to be improved to prevent overgeneration: we
need a mechanism to ensure the verbs appear together at the end of the phrase
(Moortgat & Oehrle 1994), which the analysis above fails to do. Moortgat
(1999) and Oehrle (2011) provide a much more detailed multimodal analysis of
Dutch verb clusters, which includes the unary connectives of the next section.

As a final example of an influential set of multimodal structural rules,
Table 2.4 lists the ‘wrap’ structural rules from Morrill (1994). In these rules
a is a standard associative mode (with an identity element ε), and n is a
standard non-associative mode. The Wr−1 rule allows us to move a structure
∆2 outside as the rightmost argument of a wrap mode w, but combining the
remnant structures ∆1 and ∆3 together using the non-associative mode n.

2There have historically been differences of opinion with respect to the direction of the
inclusion between more permissive modes with respect to more restrictives ones. Many
authors prefer the inverse inclusion relations (Hepple 1994, Abrusci & Ruet 1999). From
the point of view of linear logic, one way to see this difference is whether our desired
interpretation of A ⊗ B is something like (A • B)&(B • A) (the interpretation of Hepple
(1994), Abrusci & Ruet (1999)) or more as (A•B)⊕(B •A) (the interpretation of Moortgat
& Oehrle (1993)).
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2. Modern type-logical grammars

Γ[∆1 ◦a (∆2 ◦a ∆3)] ` C
Γ[(∆1 ◦n ∆3) ◦w ∆2] ` C

Wr−1
Γ[(∆1 ◦n ∆3) ◦w ∆2] ` C
Γ[∆1 ◦a (∆2 ◦a ∆3)] ` C Wr

Table 2.4: The wrap/split structural rules

This fixes the point from which ∆2 was removed, guaranteeing that when we
move ∆2 back in using the Wr rule, we return it to the same place (this is,
of course, primarily interesting when ∆2 has changed due to to other logical
rules).

The wrap/split rules provide a solution to quantifier scope using the for-
mula s/w(np\ws) for words like “someone”. The following derivation illus-
trates this, using the “someone” wide scope reading of “John believes someone
left” as an example.

John ` np

believes ` (np\as)/as

np ` np
Ax

left ` np\as

np ◦a left ` s
\E

believes ◦a np ◦a left ` np\as
/E

John ◦a believes ◦a np ◦a left ` s
\E

((John ◦a believes) ◦n left) ◦w np ` s
Wr−1

((John ◦a believes) ◦n left) ` s/wnp
/I

someone ` (s/wnp)\ws

((John ◦a believes) ◦n left) ◦w someone ` s
\E

John ◦a believes ◦a someone ◦a left ` s
Wr

To keep the proof simple, we have left associativity of a implicit by not placing
any brackets. The proof starts deriving “John believes np left” as a sentence.
Then, the Wr−1 rule is used to move the np formula to the rightmost position
with a wrap mode w. The pair of strings “John believes” and “left” joined
by non-associative mode n marks the place of the np formula by separating
the two strings to its left and right (that is, non-associativity fixes the point
of extraction). We withdraw the np hypothesis, then combine the resulting
proof with the lexical entry for “someone” using the \E rule. We complete
the proof by using the wrap rule Wr to move “someone” back to the position
from which we removed the noun phrase.

To avoid overgeneration, we require that our output cannot contain mode
w. Otherwise, we could have ended the proof before the last Wr rule to
obtain “John believes left someone” as an alternative, valid word order for
this reading. It is standard practice in multimodal grammars to allow only a
subset of the modes of a grammar to appear in the endsequent.

2.1.1 Unary residuated connectives

The earliest unary connectives added to type-logical grammars were inspired
by the linear logic exponential ‘!’. Whereas the linear logic exponential marked
formulas as specifically permitted to be weakened and contracted, the Lam-
bek calculus exponential marked formulas as allowing the structural rule of
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A •B
C

C / B

A B

A \ C

♦A

B

A

�B

Figure 2.1: Visual representation binary and unary residuation

∆ ` ♦jA Γ[〈A〉j ] ` C
Γ[∆] ` C ♦E

Γ ` A
〈Γ〉j ` ♦jA

♦I

Γ ` �jA
〈Γ〉j ` A

�E
〈Γ〉j ` A
Γ ` �jA

�I

Table 2.5: Natural deduction rules for the unary connectives

commutativity. The left and right rule were the standard promotion and dere-
liction rule (Barry, Hepple, Leslie & Morrill 1991, Morrill, Leslie, Hepple &
Barry 1990), essentially the sequent calculus rules for the modal logic S4.

Kurtonina & Moortgat (1997) proposed an alternative way of adding unary
connectives to type-logical grammars3. Whereas the binary connectives ‘\’,
‘•’ and ‘/’ are a residuated triple, the unary connectives ‘�’ and ‘♦’ are a
residuated pair, as indicated by the following equations.

A→ C/B ⇔ A •B → C ⇔ B → A\C (2.1)

A→ �B ⇔ ♦A→ B (2.2)

The advantage of this setup is that, from the point of view of linear logic,
we stay inside the multiplicative fragment and avoid the more complicated
proof machinery required for the exponentials. This is especially useful for
the proof nets which will be introduced in Section 5.1 and which will play an
important role in the rest of this book.

We can display residuation visually as shown in Figure 2.1 (Moortgat 1997,
Section 4.2.1). In the same way each node in the binary branch corresponds to
one of the three binary connectives, each node in the unary branch corresponds
to one of the unary connectives, with ♦ a unary version of • and � a unary
version of the implications.

Just like we can have multiple families i ∈ I of binary connectives, we
can allow multiple families j ∈ J of unary connectives, both for small sets

3The bracket/antibracket operators of Morrill (1992) are a similar proposal, but the
setup of Kurtonina & Moortgat (1997) is cleaner and has the required proofs of cut-
elimination, and of soundness and completeness with respect to the Kripke models.
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2. Modern type-logical grammars

Γ[∆1 ◦ (∆2 ◦ 〈∆3〉)] ` C
Γ[(∆1 ◦∆2) ◦ 〈∆3〉] ` C

MA
Γ[(∆1 ◦ 〈∆3〉) ◦∆2] ` C
Γ[(∆1 ◦∆2) ◦ 〈∆3〉] ` C

MC

Table 2.6: Version of the mixed associativity and mixed commutativity rules
using unary branches

I of binary families and J of unary families. From the point of view of the
allowed structures, the unary connectives add (labeled) unary branches to the
binary branches of previous multimodal grammars. We write unary branches
as 〈. . .〉j , where the angular brackets should remind us these brackets are a
structural reflection of the connective ♦j (just like ◦i reflects •i). Table 2.5
lists the natural deduction rules for the unary connectives.

Kurtonina & Moortgat (1997) show that the unary connectives allow us to
start in a very restricted logic, such as NL, and use the unary connectives to
license the structural rules of associativity and commutativity. On the other
hand, they also allow us to start in a very free logic, such as LP, and use the
unary connectives to block associativity and commutativity.

The unary connectives also have a number of interesting derivability pat-
terns, the simplest being the following.

♦�A ` A A ` �♦A (2.3)

The first of these patters can be derived as follows.

♦�A ` ♦�A Ax
�A ` �A Ax

〈�A〉 ` A �E

♦�A ` A ♦E

One standard way of implementing medial extraction in multimodal type-
logical grammars is by assigning the relativiser the formula (n\n)/(s/♦�np)
(we are using only a single unary and binary mode here, and therefore suppress
all indices, in a more sophisticated grammar, additional mode information will
need to be added). This exploits that fact that, according to 2.3, ♦�np ` np
which allows us to use the ‘marked’ noun phrase as a normal noun phrase.
However, we use versions of the mixed associativity and mixed commutativity
structural rules, listed in Table 2.6, which (read from premiss to conclusion)
allow us to move constituents marked with a unary branch outwards.

Taken together, this allows us to derive “John read yesterday” as being of
type s/♦�np. We can extend this proof “book which John read yesterday” as
of type n using the assignment n to “book” and (n\n)/(s/♦�np) to “which”.
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♦�np ` ♦�np
Ax

John ` np

saw ` (np\s)/np

�np ` �np
Ax

〈�np〉 ` np
�E

read ◦ 〈�np〉 ` np\s
/E

John ◦ (read ◦ 〈�np〉) ` s
\E

yesterday ` s\s
(John ◦ (read ◦ 〈�np〉)) ◦ yesterday ` s

\E

((John ◦ read) ◦ 〈�np〉) ◦ yesterday ` s
MA

((John ◦ read) ◦ yesterday) ◦ 〈�np〉 ` s
MC

((John ◦ read) ◦ yesterday) ◦ ♦�np ` s
♦E

(John ◦ read) ◦ yesterday ` s/♦�np
/I

This provides an implementation of medial extraction in multimodal catego-
rial grammars. Moortgat (1999) and Oehrle (2011) note that some interesting
differences between Dutch and English follow from the choice between extrac-
tion from right branches, as is done here for English in Table 2.6, and the
left-right symmetric choice of extraction from left branches for the analysis of
Dutch.

An additional simple but important application of the unary connectives
can be obtained by assigning the coordinator “and” the following formula
∀X.(X\�0X)/X (Morrill 1994, Kurtonina & Moortgat 1997). Combined with
the previous solution to medial extraction, this would solve most of the prob-
lematic interactions between extraction and coordination we have seen before
(as sentences (15) to (17) in Section 1.54).

2.1.2 Discussion

Multimodal type-logical grammars are important in the history of type-logical
grammars in that they allowed us to give a purely logical account of many
proposed extensions of categorial grammars. Everything from proof theory to
model theory works as it should, and a number of interesting linguistic phe-
nomena have been treated in multimodal grammars (Morrill 1994, Hendriks
1995b, Moortgat 1999, Vermaat 2005, Oehrle 2011). In addition, the multi-
modal structural rules are rather similar to ‘movement’ rules of mainstream
syntactic theory (Cornell 1997, Vermaat 1999, Lecomte & Retoré 2001).

There has also been some effort to cast some other type-logical gram-
mars, notably the Displacement calculus (Valent́ın 2014) and NLλ (Barker &
Shan 2014, Chapter 17), as instances of multimodal grammars. While such
translations are always important and establish some useful points of com-
parison, our goal will be to provide general frameworks allowing many more
of these points of comparison.

A problem with the multimodal calculus is that the set of allowed struc-
tural rules is extremely free, and this makes it hard to falsify multimodal
type-logical grammars. It is always possible to add an extra mode, or some
new structural rules. While a lot has certainly been done with relatively few
structural rules — essentially the mixed associativity and commutativity rules

4We need to be careful here that we use a different mode for licensing extraction than
we do for blocking it.
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we have seen here — there has been a move to logics with fixed sets of struc-
tural rules (or no structural rules at all), logics which do not fit neatly within
the multimodal framework of this section.

In the remainder of this chapter, we’ll take a brief tour of these different
logics.

2.2 The Displacement calculus

The Displacement calculus is a discontinuous version of Lambek calculus that
has been developed by Morrill and co-workers (Morrill et al. 2011), building
upon earlier discontinuous Lambek calculi (Morrill, Fadda & Valentin 2007,
Morrill 2011) The Displacement calculus extends the associative Lambek cal-
culus L. We have seen that L is the logic of strings composed by concatenation.
The discontinuous calculi enrich the ontology with a notion of split strings:
expressions consisting of detached parts, as in the idiom “take — to task”.
To build the phrase “take someone to task”, one wraps the discontinuous ex-
pression around its object. In this particular example, there is a single point
of discontinuity, but one can also think of cases with more than one split
point. In the Displacement calculus, we call the number of split points in an
expression (or the denotation of a formula) its sort.

The vocabulary of D (Displacement calculus) consists of residuated fami-
lies of unary and binary type-forming operations. Some of the key connectives
are given below. For the binary case, in addition to the concatenation product
of L and the residual slash operations, we have a discontinuous (wrapping)
product �, with residual infixation ↓ and extraction ↑ operations. For cases
with multiple split points, the discontinuous type-forming operations have an
indexed form ↑k,�k, ↓k explicitly referring to the k-th split point of their in-
terpretations. The function of the unary operations is to control the creation
and removal of split points.

The central equation of the Displacement calculus is the following, where
‘W ’ denotes the binary wrap operation, ‘+’ denotes string concatenation, ‘1’
a split point5.

W (α1 + 1 + α2, β)⇔ α1 + β + α2 (2.4)

It states that the wrap operator ‘W (., .)’ interacts with a structure containing
a split point ‘1’ by replacing this split point by β (the wrapped argument). Re-
turning to our previous example, given a term W (take+1+to+task, someone),
we rewrite using Equation 2.4 (with α1 = take, α2 = to + task and β =
someone) to take + someone + to + task.

In Equation 2.4, we allow α1 and/or α2 to be the empty string ε (that is,
when the split point is the leftmost or the rightmost element of a structure,
the wrap operation applies normally). The equation can be used in both
directions. When there are multiple insertion points, the Wk(., .) operation

5It is important to note that this use of ‘1’ is very different from its use in linear logic,
where 1 denotes the empty antecedent.
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A •B
C

C / B

A B

A \ C
α β

α+ β
A�B
C

C ↑B
A B

A ↓ C

α ≡
α1 + 1 + α2 β

W (α, β) ≡
α1 + β + α2

Figure 2.2: Visual representation of residuation for the Displacement calculus

requires α1 to contain k−1 insertion points (making the insertion point shown
in the equation the kth one). An alternative to Wk(., .) are the leftmost wrap
W>(., .) which requires α1 to be without insertion points (that is, it replaces
the first insertion point by β), and rightmost wrap W<(., .) which requires α2

to be without insertion points (that is, it replaces the last insertion point by
β).

One useful way to see the Displacement calculus as a logic with two triples
of residuated connectives: the Lambek calculus connectives, defined with re-
spect to concatenation ‘+’ and the discontinuous connectives, defined with
respect to W (., .). Figure 2.2 shows the two residuated triples side by side.
However, for the operation W (α, β) to be well-defined, α needs to be of the
form α1 + 1 +α2. But if α ≡ α1 + 1 +α2, then W (α, β) ≡W (α1 + 1 +α2, β)
and we can further simplify this, according to Equation 2.4, to α1 + β + α2.
This means that we can ‘compile away’ the explicit applications of the wrap
operation and formulate the logic as a labeled natural deduction calculus as
shown in Table 2.7.

Note that this requires the A and C ↑ B hypotheses to be assigned a
complex label containing a split point 1 (this amounts to spelling out variables
α of sort k as complex terms a1 + 1 + . . . + 1 + ak+1 with all variables ai of
sort 0).

The unary connectives ∧ and ∨ add and remove split points. We can see
them as defined by the operator ‘W (α, ε)’, replacing a split point in α by the
empty string ε.

The ∧ connective is used in the analysis of extraction and similar cases
where we need to remove the split point left by hypothetical material. Morrill
et al. (2011) assign a relative pronoun such as “that” the formula (n\n)/∧(s ↑
np).

a : np....
John + read + a+ yesterday : s

John + read + 1 + yesterday : s ↑ np
↑ I

John + read + yesterday : ∧(s ↑ np)
∧I

This provides a solution for the medial extraction cases like sentence (14) from
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δ : A�B

[α1 + 1 + α2 : A]i [β : B]i
....

γ1 + α1 + β + α2 + γ2 : C

γ1 + δ + γ2 : C
�Ei

α1 + 1 + α2 : A β : B

α1 + β + α2 : A�B �I

α1 + 1 + α2 : C ↑ B β : B

α1 + β + α2 : C
↑ E

[β : B]i
....

α1 + β + α2 : C

α1 + 1 + α2 : C ↑ B ↑ Ii

α1 + 1 + α2 : A β : A ↓ C
α1 + β + α2 : C

↓ E

[α1 + 1 + α2 : A]i
....

α1 + β + α2 : C

β : A ↓ C ↓ Ii

δ : ∧A

[α1 + 1 + α2 : A]i
....

γ1 + α1 + α2 + γ2 : C

γ1 + δ + γ2 : C
∧Ei

α1 + 1 + α2 : A

α1 + α2 : ∧A
∧I

α1 + 1 + α2 : ∨A

α1 + α2 : A
∨E

α1 + α2 : A

α1 + 1 + α2 : ∨A
∨I

Table 2.7: Labeled natural deduction rules for the discontinuous connectives
of the Displacement calculus

Section 1.5.

The ∨ connective introduces a type of non-determinism of the position of
the split point: the ∨E rule removes a split point, but the ∨I rule can then
insert a split point at any place (for the deterministic version, only the position
between two other split points is determined). Morrill et al. (2011) use this
expressivity for the treatment of words allowing relatively free placement, such
as parentheticals.

For the mapping from the syntactic source calculus D to the semantic
target calculus LP, the unary type-forming operations are considered inert:
the inference rules for these connectives, consequently, leave no trace in the
LP proof term associated with a derivation in the syntactic source calculus.
The continuous and discontinuous families, for the rest, are treated exactly
alike. Specifically, the infixation and extraction operations are mapped to LP
function types, like the slashes.
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2.2.1 Illustration

D has been successfully applied to a great number of discontinuous depen-
dencies. The operations of sort 1 (with a single split point) are used in the
analysis of non-peripheral extraction, discontinuous idioms, gapping and el-
lipsis, quantifier scope construal, reflexivisation, pied-piping and the Dutch
cross-serial dependencies, among others.

As an example, consider quantifier scope construal. D provides a uni-
form type assignment to generalized quantifier expressions such as “every-
one”, “someone”: (s ↑ np) ↓ s. In the syntactic source calculus, this type
assignment allows a quantifier phrase QP to occupy any position that could
be occupied by a regular non-quantificational noun phrase. Semantically, the
image of the ↑ Introduction rule at the level of the semantic target calculus
LP binds an np type hypothesis at the position that was occupied by the
quantifier phrase (the anp premise, with a a structural variable for the np hy-
pothesis). The image of the ↓ Elimination rule applies the term representing
the QP meaning to this abstract. Scope ambiguities arise from derivational
ambiguity in the source calculus D. The derivation below results in a non-local
reading ‘there is a particular x such that Mary thinks x left’. Looking upward
from the conclusion, the last rule applied is ↓ Elimination, which means the
quantifier phrase takes scope at the main clause level. An alternative deriva-
tion, producing the local scope reading, would have the / Elimination rule for
“thinks”: (np\s)/s as the last step.

someone : (s ↑ np) ↓ s

a : np....
Mary + thinks + a+ left : s

Mary + thinks + 1 + left : s ↑ np ↑ I

Mary + thinks + someone + left : s
↓ E

2.3 Lambda grammars

The origins of lambda grammars can be traced back to the work of Curry
(1961) and Oehrle (1994), with Dick Oehrle the first to present a simple treat-
ment of quantifier scope in the system. The work of de Groote (2001) and
Muskens (2003) caused a renewed interest in the system. Lambda grammars
are also called abstract categorial grammars (technically a lambda grammar
corresponds to a pair of abstract categorial grammars when definitions are
harmonized (Muskens 2003)) or linear grammars (Pollard 2011). Their defin-
ing feature is the use of the lambda calculus not only for the semantic terms
representing the meaning of phrases but also for prosodic terms representing
the string.

In other words, the syntactic logic for lambda grammars is simply LP, the
homomorphism from syntactic to semantic types remains as it was, but there
is now a second homomorphism from syntactic to prosodic types, translating
all atomic types to type s for string.
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2. Modern type-logical grammars

semantic types: (np)′ = e, (s)′ = t, (n)′ = e � t, (A( B)′ = A′ � B′

prosodic types: (np)′ = s, (s)′ = s, (n)′ = s, (A( B)′ = A′ � B′

Given a type of np ( s for an intransitive verb like “left”, this means
the corresponding prosodic term is s � s, a function from strings to strings.
As a term of this type, we can use λy.(y + left), where ‘+’ represents the
concatenation operation as before. The table below gives some more lexical
entries.

Word syntactic type prosodic type prosodic term
Mary np s Mary
thinks s( np( s s � s � s λyλx.(x+ thinks + y)
someone (np( s)( s (s � s) � s λP.(P someone)
left np( s s � s λz.(z + left)

The lexical entries for “left” and “thinks” correspond to the Lambek calcu-
lus formulas np\s and (np\s)/s respectively, with the word order information
moved from the logical formula to the prosodic term. The interesting case is
the assignment to the quantifier: syntactically it takes a sentence missing a
noun phrase to produce a sentence, while prosodically, it transforms a string
with a hole (corresponding syntactically to the missing noun phrase) into a
string where this hole is filled by the constant ‘someone’.

The rules for term assignment to syntactic proofs are the same as those
we have seen for semantic term assignment.

Γ, x : A `M : B

Γ ` λx.M : A( B
( I

Γ `M : A( B ∆ ` N : A
Γ,∆ ` (M N) : B

( E

One of the possible syntactic proofs given these lexical entries is the fol-
lowing.

w3 : (np( s)( s

w1 : np

w2 : s( np( s

v : np w4 : np( s

(w4 v) : s
( E

(w2 (w4 v)) : np( s
( E

((w2 (w4 v)) w1) : s
( E

λv.((w2 (w4 v)) w1) : np( s
( I

(w3 λv.((w2 (w4 v)) w1)) : s
( E

After substitution of the prosodic terms for the different words in the
lexicon, the computed term w3 λv.((w2 (w4 v)) w1) for this proof becomes

(λP.(P someone)) λv.(((λyλx.x+ thinks + y) ((λz.z + left) v)) Mary)

which reduces to ‘Mary + thinks + someone + left’ by β reduction.

Discussion As a consequence of its logical setup, lambda grammars make
the strong claim that every LP proof corresponds to a sequence of words. This
in contrast to other type-logical grammars where the set of proofs is generally
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Hybrid type-logical grammars

Γ `M : A( B ∆ ` N : A
Γ,∆ ` (M N) : B

( E
Γ, x : A `M : B

Γ ` λx.M : A( B
( I

Γ ` P : B ∆ ` Q : B\A
Γ,∆ ` P +Q : A

\E
w : B,Γ ` w + P : A

Γ ` P : B\A
\I

Γ ` P : A/B ∆ ` Q : B

Γ,∆ ` P +Q : A
/E

Γ, w : B ` P + w : A

Γ ` P : A/B
/I

HTLG : natural deduction

Table 2.8: Natural deduction rules for hybrid type-logical grammars

a proper subset of the LP proofs. Where in other typelogical grammars
word order is determined by the logic itself, in lambda grammars the prosodic
lambda terms in the lexicon determine the word order.

In lambda grammars, as in the lambda calculus, the syntactic constructors
are application (for the elimination rule) and abstraction (for the introduction
rule). However, the introduction rule is universal: once there is an occurrence
of x we can abstract over this occurrence without regard for whether it is
the leftmost or rightmost undischarged hypothesis as we would in a Lambek
calculus proof.

2.4 Hybrid type-logical grammars

Lambda grammars and Lambek grammars have opposite ‘periphery prob-
lems’, with Lambek grammars unable to handle non-peripheral extraction
and lambda grammars unable to handle peripheral extraction. In a series
of papers, Kubota and Levine (2012, 2015) present a direct combination of
lambda grammars with the Lambek calculus, which they call hybrid type-
logical grammars (HTLG).

To ensure the soundness of a combination of lambda grammars and the
Lambek calculus into a single system, there needs to be a sensible way of
combining function application and abstraction with string concatenation and
its residuals. For example, when f and g are both functions from strings to
strings, it is not clear what their concatenation would be, since concatenation
is an operation on strings and not on functions.

The solution of Kubota and Levine is to require that Lambek calculus
formulas only operate on objects of the string type. In other words, the
lambda grammar linear implication ‘(’ can never occur within the scope of
a Lambek calculus implication. As a consequence, (np( (np\s)) ( (np\s)
and ((np\s)/np) ( s are valid HTLG formulas, but (n\n)/(np ( s) and
((np( s)( s)/n are not.

The natural deduction rules for HTLG are as shown in Table 2.8.
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2. Modern type-logical grammars

All variables and terms in the Lambek calculus rules are of type s (string)
and ‘+’ is string concatenation. The Lambek calculus elimination rules take
terms P and Q of the two premisses of the rule, both representing strings, and
assigns the concatenation of these two string to the rule conclusion. Similarly,
the \I rule verifies that the string variable w (corresponding to hypothesis B
in the premiss of the rule) is the leftmost premiss of the computed string,
whereas the /I rule verifies it is the rightmost premiss. The ( E and ( I
rule are unchanged from their lambda grammar counterparts.

Given these logical rules and the standard lambda grammar assignment
of λP.(P e) : (np ( s) ( s to a quantifier like “everyone”, we derive the
Lambek calculus subject quantifier s/(np\s) as follows.

x : np y : np\s
x+ y : s

\E

λx.(x+ y) : np( s
( I

λP.(P e) : (np( s)( s

(λP.(P e))(λx.(x+ y)) : s
( E

e+ y : s
≡β

e : s/(np\s)
/I

This derivation depends crucially both on working modulo β equivalence and
on substitution of the lexical lambda term λP.(P e) into the proof, as indicated
by ≡β step in the proof, and the complex term assigned to the hypothesis
(np ( s) ( s respectively. Together, these allow us to compute the string
term e+y indicating that the hypothesis y corresponding to the formula np\s
is the rightmost hypothesis of the proof, thereby allowing us to perform the
/I rule to withdraw this y hypothesis.

Although it may seem unusual to allow the success of a derivation to
depend on the lexical term, the lambda term recipe given by the lexicon is
crucial for determining the left- and rightmost positions of a string term. For
example, choosing λP.(P ε) + e (where ε denotes the empty string) would
produce y + e after the β reduction step, which would make the final /I
step in the proof invalid (but which would allow a \I inference as the last
step). In other words, although hybrid type-logical grammars have a less clean
separation of the lexicon from the logic than other type-logical grammars,
this is a consequence of ensuring the Lambek calculus implications behave
correctly.

2.5 The logic of scope

The logic of scope NLλ was introduced by Chris Barker and Chung-Chieh
Shan (Barker & Shan 2014) as a logic based on the non-associative Lambek
calculus NL. It is a basic logic with two non-associative modes. In a stan-
dard multimodal setup this would produce sequents where the antecedents
are binary branching trees, with formulas at the leaves and the internal nodes
labeled with one of the two modes. The particularity of NLλ is that it in-
troduces what it calls gapped structures where the gaps are indicated in the
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The logic of scope

antecedents by a notation based on lambda abstraction. The key component
of NLλ and its main departure from other type-logical grammars are the
structural rules below.

Ξ[Γ[∆]]⇒ C

Ξ[∆ ◦w λx.Γ[x]]⇒ C
λ

Ξ[∆ ◦w λx.Γ[x]]⇒ C

Ξ[Γ[∆]]⇒ C
λ−1

The λ rule has the side condition that the variable x must be unique to the
proof. The λ rule can move out any substructure ∆ from a structure Γ (in any
larger context Ξ), producing a structure with the wrapping mode ‘◦w’ where
∆ is the left sister of the structure Γ where the variable x, which is abstracted
by a λ operator, marks the original position of ∆. The side condition of the λ
rule demands that each λ rule uses a distinct variable. The inverse rule λ−1

moves ∆ back to its original position.
Although the notation is borrowed from the lambda calculus and some of

the properties of the lambda constructor are reminiscent of the linear lambda
calculus, an NLλ antecedent with a number of lambda operators is in many
ways closer to an antecedent with the same number of split points in the
discontinuous Lambek calculus, with the important difference that NLλ op-
erates in a non-associative calculus and that in NLλ insertion occurs on the
outermost abstracted variable whereas in the discontinuous Lambek calculus
insertion occurs with respect to the relative linear order of the split points.

As an example of how NLλ works in practice, we return to the example
sentence “Mary thinks someone left” with the wide scope reading for “some-
one”. Given the standard formula assignments of np to “Mary”, (np \ s) / s
to “thinks” and np \ s to “left”, one of the proofs is the following.

someone ` s /w (np \w s)

....
Mary ◦ (thinks ◦ (np ◦ left)) ` s

np ◦w λx.(Mary ◦ (thinks ◦ (x ◦ left))) ` s λ

λx.(Mary ◦ (thinks ◦ (x ◦ left) ` np \w s
\wI

someone ◦w λx.(Mary ◦ (thinks ◦ (x ◦ left))) ` s
/wE

Mary ◦ (thinks ◦ (someone ◦ left)) ` s λ−1

For the interesting part of the proof, reading from the conclusion to the
premisses, we use the λ−1 rule to move “someone” to the leftmost position and
mark its previous position by the abstracted variable x. The introduction rule
and the λ rule then move the np back to the original position of “someone”.
We can then derive “Mary thinks np left” of type s as before.

The proof is structurally similar to the D proof of the same reading, with
the combination of λ and \wI corresponding to the ↑ I rule and the combi-
nation of λ−1 and /wE corresponding to the ↓ E rule.

2.5.1 Discussion

Although the λ structural rules are somewhat unusual, NLλ gives us a fairly
simple treatment of quantifier scope and many other phenomena. Barker
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& Shan (2014) present another calculus, NLcl, which has a standard set of
multimodal structural rules. They present a translation from NLλ proofs to
NLcl proofs and vice versa. In an indirect way, this also provides standard
Kripke models for NLλ via its translations to NLcl, although Barker (2019)
also provides a way to obtain Kripke models directly.

While nothing in the setup of NLλ itself hinges upon non-associativity
of ‘◦’, the translation from NLλ to NLcl does crucially depend on the non-
associativity of the target logic. Therefore, adding associativity of ‘ ◦’ (or
even a separate associative mode in addition to the two other modes) to NLλ
would require a more delicate translation to a standard multimodal logic.

2.6 Lambek-Grishin

In addition to the logical perspective of the Lambek calculus, Lambek (1958,
1961) also presented an algebraic perspective where the three connectives of
the Lambek calculus form a residuate triple as indicated by Equation 2.5 be-
low. Grishin extended the Lambek calculus by adding dual residuation prin-
ciples to the Lambek calculus’ residuation principle. So where the Lambek
calculus has three connectives satisfying Equation 2.5, the Lambek-Grishin
calculus has three additional, dual residuated connectives satisfying Equa-
tion 2.6.

B → A\C ⇔ A •B → C ⇔ A→ C/B (2.5)

A; C → B ⇔ C → A�B ⇔ C �B → A (2.6)

Just like the algebraic/combinatorial representation of the non-associative
Lambek calculus, we need only add reflexivity and transitivity of ‘→’ to obtain
the ‘basic’ Lambek-Grishin calculus.

The three Grishin connectives ‘;’, ‘�’ and ‘�’ are related to each other
in a way which is perfectly symmetric to the relation between ‘\’, ‘•’, and ‘/’.
Grishin also investigated the addition of four sets of interaction principles to
the calculus. One of these sets — shown below as Equations 2.7 and 2.8 — is
the most interesting for our purposes: they combine the Lambek and Grishin
connectives in a way which (at least with perfect hindsight) resembles mixed
associativity and commutativity in multimodal grammars.

(A;B) • C → A; (B • C) A • (B � C)→ (A •B)� C (2.7)

B • (A; C)→ A; (B • C) (A� C) •B → (A •B)� C (2.8)

The postulates for ; allow us to move the A argument of the connec-
tive out of Lambek structures, essentially allowing it to select its argument
at a distance, provided it passes only through Lambek contexts ‘•’. Lin-
guistic applications and formal properties of LG have been investigated by
Bernardi, Moortgat and colleagues (Moortgat 2007, Bernardi & Moortgat
2010, Bastenhof 2013), but the linguistic applications have not been as well-
developed compared to many other type-logical grammars.
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Logic Connectives Structure Operations
L /, •, \ list —
NL /, •, \ binary tree —
Multimodal /i, •i, \i labeled binary tree tree rewrites

♦j , �j labeled 1-2 tree tree rewrites
D L + ↑k, �k, ↓k

∧, ∨ tuple of lists wrap
Lambda ( lambda term β reduction
Hybrid L + ( lambda term (list) β reduction
NLλ NL +( , }, ) lambda term (tree) β reduction/expansion
LG NL + �, �, ; free tree graph rewrites

Table 2.9: Executive summary of different type-logical grammars

2.7 Discussion

Table 2.9 gives an executive summary of the different logics which serve as the
basis of modern type-logical grammars. For each logic, we present its logical
connectives, the way its logical statements are structured, and the operations
on these structures.

For multimodal type-logical grammars, the formulas are structured as la-
beled 1-2 trees (that is, trees with both unary and binary branches) and we
allow tree rewrites which can refer to these labels, but cannot copy or delete
subtrees. With the exception of lambda grammars, which only have linear
implication as a logical connective, all type-logical grammars take either NL
or L as their base logic, to which they add different connectives. On the
structure/operation side, a number of formalisms allow some form of (linear)
lambda abstraction and β reduction, but these have a different status in dif-
ferent systems: in NLλ, only structural rules can produce or remove lambda
terms, whereas in lambda grammars and hybrid grammars, lambda terms
appear both in the lexicon and (by the Curry-Howard isomorphism) as the
result of the rules for linear implication ‘(’.

Compared to the Lambek calculus, which is a logic of strings or of lists
of formulas, the Displacement calculus D can be seen as a logic of tuples of
strings or lists of lists of formulas. An expressions of sort k, that is with
k separator symbols, corresponds to a k + 1-tuple, and the wrap operation
Wk(α, β) replaces the kth separator symbol in α by β.

The Lambek-Grishin calculus LG adds up-down symmetric connectives
to the non-associative Lambek calculus, which produces acyclic connected
graphs (free trees, to be contrasted with the rooted trees of other type-logical
grammars) with two types of binary branches, branching either upward or
downward. The interaction rules proposed by Grishin (1983), which reconnect
binary branches of the two families, extend the expressivity of the system.

Table 2.10 presents a ‘scorecard’ for the different type-logical grammars
discussed here. The first 5 columns represent classes of linguistic phenomena,
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Formalism RNR Ex q ∧ gap Language Complexity
NL – – – + – = CFL P
L + – – + – = CFL NP-complete
D + + + + + ⊇ MCFLwn NP-complete
Lambda – + (+) – – ⊇ MCFL NP-complete
LG – – + + – ⊇ MCFL NP-complete
NLλ – + + + + ⊇ MCFL NP
Hybrid + + + + + ⊇ MCFL NP-complete
MILL1 + + + + + ⊇ MCFL NP-complete
Multimodal + + + + + = CSL PSPACE-complete

Table 2.10: Scorecard for the different type-logical grammars

corresponding essentially to our problem cases in Section 1.5.2:

1. right-node raising (RNR); this includes related forms of non-constituent
coordination,

2. extraction (Ex), including medial extraction,

3. quantifier scope (q), including related phenomena handled by Moort-
gat’s (1996) q operator; the ‘(+)’ indication for lambda grammars indi-
cates that in this formalism q works for quantifiers, but not for related
constructions such as reflexives,

4. coordination (∧) represents the treatment of coordination,

5. gapping (gap) represents the treatment of gapping.

The final two columns indicate the known results for formal language
classes6 (for most formalisms, only a lower bound is known) and complex-
ity.

2.8 Conclusion

We have seen quite a number of logical systems in this chapter, all adhering
to the logical view of grammars introduced by Lambek (1958). Even though
there are many different logical primitives used, there is a large agreement
among formalisms as to the underling deep structure of the analysis of many
phenomena7. In addition, there seems to be a sort of family resemblance

6CFL denotes the context-free languages, MCFLwn and MCFL the (well-nested) multi-
ple context free languages (Seki, Matsumura, Fujii & Kasami 1991), and CSL the context-
sensitive languages.

7The Lambek-Grishin calculus is an exception here in that we can not directly ‘read
off’ the deep structure derivation from the surface structure one. Its syntax-semantics
interface is more complex, but also more flexible (Bernardi & Moortgat 2010, Moortgat &
Moot 2013).
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between the treatments of medial extraction and quantifier scope in these
different systems:. However, the differences at the level of surface structure
make it difficult to give detailed comparisons between analyses in different
formalisms. Surface structure comparisons would make it easier to translate
analyses between different formalisms, but also to show where analyses differ.
The main goal of Chapters 4 and 5 is to make such comparisons possible by
providing two general logical formalisms which together capture all modern
type-logical grammars. But before that, the next chapter presents some of
the necessary background in proof theory.

45





3 Proof Nets

3.1 Proof systems

The Lambek calculus, like many other logics, can be formulated in a number
of different ways. Although these different formulations are easily shown to be
equivalent, each proof system has its own set of advantages and disadvantages.
The executive summary of these advantages is as follows.

Natural deduction has the advantage of a direct link to formal semantics
by means of the Curry-Howard isomorphism. Even though this is clear
and simple for the implications, this straightforward link to semantics
is complicated by the •E rule1,

Sequent calculus has the advantage of clearly showing the logical symmetry of
the calculus. It is also easy (although inefficient) to use for proof search.
Sequent calculus is also the system of choice for inductive proofs about
the Lambek calculus: some results, such as the subformula property,
are most easily shown for the sequent calculus. Unlike natural deduc-
tion, different proofs do not necessarily correspond to different semantic
readings (this is generally called the problem of spurious ambiguity : the
sequent calculus generates many different proofs of the same reading).
Intuitively, this is because the sequent calculus is overly bureaucratic.

1In intuitionistic logic, adding the conjunction rules don’t represent such a complication,
but this is due to the fact that ∧E is additive from the linear logic point of view, whereas
•E is multiplicative.
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Combinator systems have the advantage of a very simple rule set, which
makes them the system of choice for proving soundness and completeness
with respect to models. For the Lambek calculus (and its multimodal
versions) the combinatorial representation also forms an interpretation
of the logic in category theory. Unlike natural deduction and sequent
calculus, combinator systems generally do not have the subformula prop-
erty, and doing parsing/proof search directly in combinator systems is
quite hard,

Proof nets combine the good properties of natural deduction and the sequent
calculus: they have the logical symmetry of the sequent calculus and the
correspondence between proofs and lambda terms of natural deduction.
Because of this combination, they are a convenient formalism for proof
search. On the other hand, inductive proofs requiring us to decompose a
proof net into its valid substructures tend to be harder than for sequent
proofs: unlike for sequent proofs, where it is easy to remove the last
rule, proof nets require us to be a bit more careful.

Because of the constructive intertranslatability results, these advantages
are all relative.

3.1.1 Natural deduction

Natural deduction is the proof system we have seen in Chapter 1. Natural
deduction can be presented in two different ways, which are easily shown to
be equivalent. The easiest way to present natural deduction is in the tree
like form shown in Table 3.1. This representation is sometimes called Prawitz
style or Prawitz-Gentzen style.

This representation has the advantage that we do not have to manage the
hypotheses explicitly: the leaves of the tree — or at least those leaves which
have not been discharged — are the hypotheses. Given that the Lambek
calculus is a non-commutative logic, the yield of the tree represents the list
of the hypotheses. This allows us to specify that the \I rule discharges the
leftmost (undischarged) hypothesis of the proof, and the /I the rightmost one.
The /I and \I rules have the additional condition that there must be at least
one other undischarged hypothesis besides B (the prevents empty antecedent
derivations such as ` n/n). The •E rule is a bit complicated in this respect:
we require that the two discharged A and B hypotheses are adjacent, but the
hypotheses used to derive A • B appear between those to the left of A and
those to the right of B. In other words, the discharged hypotheses A and B
are replaced by the hypotheses used to derive A •B with respect to the yield.

Table 3.2 shows the version of natural deduction with explicit hypotheses.
While the •E rule is still complicated in this format, the explicit management
of hypotheses allows the rule to state directly (and without tortuous prose)
that ∆ occurs between Γ and Γ′ in the conclusion of the rule. The /I and
\I rules have the condition that Γ cannot be empty, but we can state explic-
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A •B

. . . [A]i[B]i . . .
....
C

C
•Ei A B

A •B •I

A/B B

A
/E

. . . [B]i
....
A

A/B
/Ii

B B\A
A

\E

[B]i . . .
....
A

B\A
\Ii

Table 3.1: Natural deduction for L, Prawitz style. The A and B hypothe-
ses must be adjacent for the •E rule, B must be the leftmost undischarged
hypothesis for /I and the rightmost for \I.

∆ ` A •B Γ, A,B,Γ′ ` C
Γ,∆,Γ′ ` C •E Γ ` A ∆ ` B

Γ,∆ ` A •B •I

Γ ` A/B ∆ ` B
Γ,∆ ` A /E

Γ, B ` A
Γ ` A/B

/I

Γ ` B ∆ ` B\A
Γ,∆ ` A \E

B,Γ ` A
Γ ` B\A \I

Table 3.2: Natural deduction for L, sequent style

itly that B must be the leftmost (respectively the rightmost) undischarged
hypothesis.

The sequent style version of natural deduction results in proofs which are a
bit more complicated because of the explicit hypothesis management, but this
also gives us added flexibility. Many rules can not easily be stated directly on
trees (at least not without bending the definition of tree beyond recognition)
but can be stated without problem in sequent style natural deduction. These
include the linear logic additives, but also the rules for the non-associative
Lambek calculus and the rules for the unary residuated connectives ♦ and �.

In natural deduction, the connectives have an elimination rule E, which
tells us how to use a formula with this connective, and an introduction rule I,
which tells us how to prove a formula with this connective. As a consequence,
for the elimination rules, the formula with the principal connective appears
as a premiss of the rule (and disappears in its conclusion), whereas for the
introduction rule, for formula with the principal connective appears only in
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the conclusion.

For natural deduction calculi, we generally want to prove a form of nor-
malisation. Normalisation is a way of showing that the introduction and
elimination rules are duals or inverses and that their combinations ‘cancel
out’. For example, a normalisation step for / looks as follows.

Γ [B]i
.... δ1
A

A/B
/Ii

∆.... δ2
B

A
/E

 

Γ

∆.... δ2
B.... δ1

A

On the left hand side, we have an introduction rule producing a formula A/B,
which is then immediately combined with B for form an A again. This proof
contains a ‘detour’ of a kind: if we can prove B using the proof δ2, then instead
of the withdrawn hypothesis B, we can use this proof δ2 directly, then continue
the proof δ1 as before to produce A. This produces the proof shown above on
the right. This operation preserves the order on the undischarged hypotheses
Γ,∆. On the term side, this corresponds to replacing a term ((λx.M)N) by
M [x := N ], that is to a beta reduction on the terms.

3.1.2 Sequent calculus

Table 3.3 shows the sequent calculus version of the Lambek calculus. In the
sequent calculus the L• rule is just a normal rule like the others — unlike the
•E rule in natural deduction to which it corresponds.

Compared to natural deduction, the sequent calculus is considerably more
bureaucratic. While the natural deduction calculus (like the sequent calcu-
lus) keeps track of the hypotheses of a proof, in a natural deduction proof
nearly all the ‘action’ happens on the right hand side of the turnstile. The
left rules of the sequent calculus, on the other hand, operate (as their name
suggests) entirely on the left hand side. For example for the L/ rule, there is
non-determinism in the choice of the main formula of the rule (there can be
alternative left or right rules which can apply depending on Γ, ∆, Γ′ and C)
and additional nondeterminism in splitting up the context to the right of the
formula A/B into ∆ and Γ′ (the same non-determinism applies, up to symme-
try, to the L\ rules). As a consequence one natural deduction proof generally
corresponds to many different sequent calculus proofs because of inessential
rule permutations — a problem sometimes called the spurious ambiguity prob-
lem in the type-logical grammar literature. As discussed in Section 1.3.1, we
are interested in different proofs only when they produce (at least potentially)
different meanings. More precisely, we are interested in different proofs only
when the lambda terms corresponding to these proofs (by the Curry-Howard
isomorphism) are different. In other words, we want our proof search to enu-
merate (normal form) natural deduction proofs, or at least proof objects in
1-1 correspondence with them.
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Identity

A ` A Ax
∆ ` A Γ, A,Γ′ ` C

Γ,∆,Γ′ ` C Cut

Logical Rules

Γ, A,B,∆ ` C
Γ, A •B,∆ ` C L• Γ ` A ∆ ` B

Γ,∆ ` A •B R•

∆ ` B Γ, A,Γ′ ` C
Γ, A/B,∆,Γ′ ` C

L/
Γ, B ` A
Γ ` A/B

R/

∆ ` B Γ, A,Γ′ ` C
Γ,∆, B\A,Γ′ ` C L\

B,Γ ` A
Γ ` B\A R\

Table 3.3: The sequent calculus L

The sequent calculus has left L and right R rules for the logical connec-
tives (instead of the introduction and elimination rules of natural deduction)
depending on whether the main formula of the rule occurs on the left or on
the right of the turnstile. Whereas natural deduction is based on a sym-
metry of between introduction and elimination rules for a connective, with
normalisation the standard verification the system is logically well-behaved,
sequent calculus is based on a symmetry between left and right rules, and cut
elimination is the standard verification that the system is well-behaved.

Proving cut elimination is a bit complicated because of the syntactic setup
of the sequent calculus. Many (indeed most) of the cases in a cut elimination
proof consist of changing the order of two rules until we arrive at the case
where there is a cut rule of a formula A which is the main formula of both
rules producing the premisses of the cut rule. The proof below shows the case
for a cut formula A/B which is the main formula of both rules providing the
premisses of the cut rule.

.... δ1
∆, B ` A
∆ ` A/B

R/

.... δ2
∆′ ` B

.... δ3
Γ, A,Γ′ ` C

Γ, A/B,∆′,Γ′ ` C
L/

Γ,∆,∆′,Γ′
Cut

We can replace this cut by two cuts on the immediate subformulas of A/B as
follows.

.... δ2
∆′ ` B

.... δ1
∆, B ` A

.... δ3
Γ, A,Γ′ ` C

Γ,∆, B,Γ′ ` C Cut

Γ,∆,∆′,Γ′
Cut
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Lambek (1958) already proved cut elimination in his original article on the
Lambek calculus including the many cases of rule permutations (Moot & Re-
toré 2012, Section 2.7, also provide a full proof). When a new type-logical
formalism is introduced, normal a cut elimination proof is one of the first
things to prove. For example, Moot & Stevens-Guille (2021) prove cut elimi-
nation proof for the hybrid type-logical grammars of Kubota & Levine (2020).

Cut elimination has important consequences. Firstly, it ensures the sub-
formula property. That is, to prove a statement we only need to consider
formulas which are subformulas of the initial statement. Although the sub-
formula property also holds for natural deduction proofs, it is a bit harder to
prove: the C formula of the •E rule complicates the proof.

A second advantage of cut elimination, is that we can use the (cut-free)
sequent calculus for backward chaining proof search. In the absence of the
cut rule, there is only a finite number of ways to instantiate the rules, and
each of them only produces smaller subproofs (since, at the very least, the
premisses have one less connective). Lambek (1958) used cut elimination as
a way to prove decidability of his logic. For variants and extensions of the
Lambek calculus, establishing decidability can be a bit more involved, but
still generally passes by cut elimination.

However, while cut elimination shows it is certainly possible to use the
sequent calculus for proof search, it is not a very efficient: the same rule per-
mutations which complicate the cut elimination proof also complicate proof
search, and while it is possible use intelligent proof search strategies for the
sequent calculus of the Lambek calculus (Moortgat 1988), I believe it is worth-
while to look for proof systems which inherently avoid the spurious ambiguity
problem. Ideally, each distinct proof object would correspond to at least a
potentially distinct reading of a sentence.

3.1.3 Combinatorial calculus

Lambek’s classic paper (Lambek 1958) starts with a combinatorial represen-
tation of the Lambek calculus based on the algebraic principle of residuation.
Table 3.4 shows the rules of this calculus.

In the Lambek calculus, the standard interpretation of the product ‘•’ is as
a type of concatenation, with the implications ‘\’ and ‘/’ its residuals. Using
the residuation calculus, we can derive standard cancellation schemes such as
the following.

C / B → C / B
Refl

(C / B) •B → C
Res/,•

A \ C → A \ C
Refl

A • (A \ C)→ C
Res\,•

Showing us that when we compose C/B with a B to its right, we produce
a C, and that when we compose A \C with an A to its left, we produce a C.

The residuation presentation of the Lambek calculus naturally forms a
category. This not only gives the Lambek calculus a category theoretic foun-
dation — something Girard (2011) argues is an important, deeper level of
meaning for logics — but it can also play the role of an alternative type of
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Identity

A→ A
Refl A→ B B → C

A→ C
Trans

Residuation

A •B → C
A→ C / B

Res•,/
A •B → C
B → A \ C

Res•,\

A→ C / B

A •B → C
Res/,•

B → A \ C
A •B → C

Res\,•

Associativity

A • (B • C)→ (A •B) • C
Ass1

(A •B) • C → A • (B • C)
Ass2

Table 3.4: Residuation-based presentation of the Lambek calculus

Identity

A→ A
Refl A→ B B → C

A→ C
Trans

Application

A • (A \B)→ B
Appl\

(B / A) •A→ B
Appl/

Co-Application

A→ B \ (B •A)
Coappl\

A→ (A •B) / B
Coappl/

Monotonicity

A→ B C → D
B \ C → A \D

Mon\
A→ B C → D
A • C → B •D Mon•

A→ B C → D
C / B → D / A

Mon/

Associativity

A • (B • C)→ (A •B) • C
Ass1

(A •B) • C → A • (B • C)
Ass2

Table 3.5: Došen’s presentation of the Lambek calculus

natural language semantics for the Lambek calculus (Lambek 1988, Coecke,
Grefenstette & Sadrzadeh 2013), to be contrasted with the more standard
semantics for type-logical grammars in the tradition of Montague (1974) we
have seen before.
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An alternative combinatorial representation of residuation is found in Ta-
ble 3.5. This presentation uses the two application principles we have derived
above as axioms, and adds two additional principles of co-application, easily
obtained from the identity on the product formulas together with a residuation
step.

A •B → A •B Refl

A→ (A •B) / B
Res•,/

B •A→ B •A Refl

A→ B \ (B •A)
Res•,\

The advantage of this presentation is that, besides transitivity, the only
recursive rules are the monotonicity principles for the three connectives. This
makes this presentation especially convenient for some types of inductive
proofs. For example, Došen (1992) uses this presentation to show that the
Lambek calculus is sound and complete for Kripke models, and these results
extend to the multimodal calculi we have seen in Section 2.1 (Kurtonina 1995,
Kurtonina 1998, Kurtonina & Moortgat 1997).

Compared to sequent calculus and natural deduction, the combinatorial
calculi are not well-suited for proof search. We do not have the subformula
property, and, contrary to the cut rule in the sequent calculus, the transitivity
rule is essential to prove many theorems. However, the connections to algebra,
category theory and model theory make the combinatorial representation a
valuable alternative presentation of the Lambek calculus2.

3.1.4 Towards proof nets

With so many proof systems available for type-logical grammars, the reader
may be justified to wonder about the need for yet another one. First, let’s
emphasise that having many different proof systems is a good thing: having
multiple, equivalent characterisations of the same class of provable statements
is a type of evidence that this class is mathematically a ‘natural’ class. When
proving a meta-theorem about the logic, having multiple equivalent proof sys-
tems allows us to pick and choose the formalism most convenient for proving
the theorem: sequent calculus for the subformula property, natural deduction
for the Curry-Howard isomorphism and the combinatorial system for sound-
ness and completeness with respect to Krikpe models.

As noted before, when we use type-logical grammars as a tool for linguistic
modelling we want to verify its predictions using a systematic way to enumer-
ate all different proofs for a sentence in our grammar. This way, we verify
our grammars generate all and only the right readings for each grammatical
sentence.

With this purpose in mind, natural deduction proofs are almost the right
proof system. The implication only fragment is very well-behaved and can
be used for proof search (Moot & Retoré 2012, Section 2.6.2) (Moot 2018b,

2While all type-logical grammars discussed in Chapter 2 have a sequent and natural
deduction calculus, not all type-logical grammars have a combinatorial representation of
this type. For example, hybrid type-logical grammars and lambda grammars do not appear
to have a way to summarise all grammar combinatorics using this type of axiomatisation.
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Section 2.2). However, as we have seen, the problem with natural deduction is
the •E rule. Now, while the •E rule — to say the very least — does not play
a very important part in the linguistic applications of type-logical grammars,
there are connectives of type-logical grammars, notably ♦ and ∃, for which
the natural deduction elimination rules have the same bad properties as the
•E rule, but whose linguistic applications are much more convincing.

In the literature on Lambek calculus proof search, many authors have
studied ways of restricting the form of proofs in the sequent calculus in such a
way that only one proof is found for each different reading (König 1989, Hepple
1990, Hendriks 1993). However, these systems were generally restricted to
the implicational fragment. With the advent of linear logic and a better
understanding of the logical symmetries of the sequent calculus, Andreoli
(1992) presented a system of focused sequent proof search. Focusing is an
important topic in its own right, but I will little more to say about it beyond
a few brief remarks.

Proof nets are hypergraph-based representations of proofs. They can be
seen as a sort of parallelised sequent calculus or, alternatively, as a multi-
conclusion natural deduction. Like natural deduction, different proof nets
correspond to proofs which are different for interesting reasons. Like the
sequent calculus the •E/•L rule requires no special treatment. Because there
are no inessential rule permutation to consider, cut elimination for proof nets
is trivial (Girard, Lafont & Taylor 1988, Appendix B.4).

Proof nets were originally introduced for linear logic (Girard 1987), but
soon adapted to the Lambek calculus (Roorda 1991). One of the important
questions which will concern us throughout the rest of this book is how to
adapt proof nets to the various types of modern type-logical grammars we
have seen in Chapter 2. For multimodal categorial grammars extended with
unary connectives, Moot & Puite (2002) already provide a proof net calculus
which we will briefly discuss in Section 5.1.

Whereas focusing is a type of backward chaining sequent proof search,
with restrictions on the allowed rule applications, proof search with proof
nets is better seen as a type of forward chaining proof search3. This has the
advantage that it directly computes the structure for calculi with structured
sequents. This is not that relevant for the Lambek calculus, where we are
given the sequence of input formulas, but many other calculi (even the non-
associative Lambek calculus) require us to compute the structure of the input
formulas (e.g., a binary branching tree for NL). Proof nets also do not suffer
from the sequent calculus problem (which applies equally to focused proofs)
of deciding how to partition the antecedent formulas among the premisses of a
binary rule. In addition, proof net proof search has more degrees of freedom,
which at least potentially allows it to better detect certain types of early
failure. While these disadvantages of focused proof search can at least be
partially solved by making proof search slightly more complicated, and while

3Given that we use linear logic, many of the standard drawbacks of forward chaining
(Russell & Norvig 1995, Section 9.3) do not apply. For example, we never need to worry
about ‘irrelevant’ formulas, since all our formulas must be used in the proof.
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` A,A⊥
Ax

` Γ, A ` A⊥,∆
` Γ,∆

Cut

` Γ, A ` B,∆
` Γ, A⊗B,∆ ⊗

` Γ, A,B

` Γ, A`B
`

Table 3.6: One-sided sequent calculus rules for multiplicative linear logic

the sequents for which proof nets perform better are almost certainly balanced
by other types of sequents for which focused sequents perform better, we will
leave a detailed performance comparison to future research.

3.2 Multiplicative proof nets

Multiplicative linear logic contains only the connective for conjunction, ‘⊗’
called tensor, the connective for disjunction, ‘`’ called par, and negation,
written as a ‘⊥’ superscript. Negation can be restricted to atomic formulas
by using the linear logic versions of the standard de Morgan rules and double
negation elimination to remove negations over complex formulas — the right-
hand column lists the standard de Morgan rules for comparison.

(A⊗B)⊥ = B⊥ `A⊥ ¬(A ∧B) = ¬A ∨ ¬B (3.1)

(A`B)⊥ = B⊥ ⊗A⊥ ¬(A ∨B) = ¬A ∧ ¬B (3.2)

(A⊥)⊥ = A ¬¬A = A (3.3)

Formulas are then formed by literals (atoms and their negations) and the
tensor/conjunction and par/disjunction connectives. Linear implication ‘(’
is defined in terms of disjunction and negation, with the standard definition
A( B ≡def A

⊥`B (corresponding to A⇒ B ≡def ¬A∨B in classical logic).
The advantage of setting up the logic in this way is that we can formulate

a very simple one-sided sequent calculus for it, translating two-sided sequents
A1, . . . , An ` B1, . . . , Bm into one-sided sequents ` A⊥1 , . . . , A⊥n , B1, . . . , Bm
and with the logical rules shown in Table 3.6. The sequent calculus comma is
implicitly assumed to be associative and commutative.

As an example, let’s take the intuitionistic sequent of Equation 3.4 below.

(A( B)⊗ (B( C) ` A( C (3.4)

It is the reflection in intuitionistic linear logic of either of the two Lambek
calculus sequents of Equation 3.5.

(A\B) • (B\C) ` A\C (C/B) • (B/A) ` C/A (3.5)

Equation 3.6 shows the corresponding classical one-sided sequent.

` (A⊗B⊥) ` (B ⊗ C⊥), A⊥ ` C (3.6)
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One possible proof of this sequent is the following.

` B,B⊥ ` A,A⊥

A⊗B⊥, B,A⊥
⊗
` C,C⊥

Ax

` A⊗B⊥, B ⊗ C⊥, A⊥, C
⊗

` A⊗B⊥, B ⊗ C⊥, A⊥ ` C
`

` (A⊗B⊥) ` (B ⊗ C⊥), A⊥ ` C
`

There are three other cut-free proofs of this same sequent: the order of
the two par rules and of the two tensor rules with respect to each other can
be reversed. However, these rule orderings are inessential, just an artefact of
the very explicit way in which the sequent calculus manages contexts. There
is only one proof net corresponding to these four sequent proofs. When proof
nets differ, they differ for interesting reasons. In the intuitionistic case we
have one (cut-free) proof net for each lambda term (modulo equivalence).

In this particular case, the problem is not resolved when moving to (in-
tuitionistic) natural deduction: as shown below, the last rule in the natural
deduction proof of (A( B)⊗ (B ( C) ` A( C can be either ⊗E or ( I
and these two proofs are equivalent (by a commutative conversion).

(A( B)⊗ (B( C)

[A]2 [A( B]1

B
( E

[B( C]1

C
( E

A( C
( I2

A( C
⊗E1

(A( B)⊗ (B( C)

[A]2 [A( B]1

B
( E

[B( C]1

C
( E

C
⊗E1

A( C
( I2

Proof nets are a type of (hyper)graph where the nodes are formulas and
the (hyper)edges are called links. The links for multiplicative linear logic are
shown in Table 3.7. The conclusions of a link are those formulas connected
from the bottom of the link to the top of the formula; the premisses of a link
are the formulas attached (from their bottom) to the top of the link. The
axiom link has no premisses and two conclusions A and A⊥ (the order of
the two conclusions doesn’t matter). The cut link has two premisses A and
A⊥ and no conclusions (the order of the two premisses doesn’t matter). The
tensor and par link have the same premisses A and B (in that order) and
as conclusion A ⊗ B and A ` B respectively. The par link is distinguished
visually by using a connected pair of dotted lines.
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A⊥ A A⊥ A

A⊗B

A B

A`B

A B

Table 3.7: Links for proof nets in multiplicative linear logic

Definition 3.1 We define proof nets inductively as follows.

Axiom Axiom links are proof nets with conclusions A,A⊥.

Par If Π is a proof net with conclusions Γ, A,B, we can connect A and B as
the premisses of a new par link with conclusion A ` B to form a proof
net of Γ, A`B.

Tensor If Π1 and P2 are two disjoint proof nets with conclusions Γ, A and B,∆
respectively, we can connect A and B as the premisses of a new tensor
link with conclusion A⊗B to form a proof net with conclusions Γ, A⊗
B,∆.

Cut If Π1 and P2 are two disjoint proof nets with conclusions Γ, A and A⊥,∆
respectively, we can connect A and A⊥ as the premisses of a new cut
link to form a proof net with conclusions Γ,∆.

The inductive rules for proof net construction follow the rules of the se-
quent calculus very closely, and this makes it easy prove the systems are
equivalent with respect to derivable sequents (up to a 1-1 matching between
the rules of the sequent proof and the links of the proof nets).

The sequent proof of ` (A⊗B⊥) ` (B ⊗C⊥), A⊥ `C translates into the
proof net shown in Figure 3.1.

Although the four possible proofs differ in the order of application of the
inductive rules for proof nets — as in the sequent calculus, we can inverse the
order of the two tensor rules, and similarly for the two par rules — these all
produce the proof net shown in Figure 3.1.

3.2.1 Proof structures, modules and components

The inductive definition of proof nets has the drawback that it is not immedi-
ately obvious whether of a graph which looks like a proof net actually is one.
That is, given a proof structure — a graph composed of formulas and links
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A⊥ ` C

A⊥ CB ⊗ C⊥

B C⊥

A⊗B⊥

A B⊥

(A⊗B⊥) ` (B ⊗ C⊥)

Figure 3.1: Proof net of (A⊗B⊥) ` (B ⊗ C⊥), A⊥ ` C

just like proof net — we want to determine whether or not it corresponds in
some way to the inductive definition of proof nets.

Definition 3.2 A proof structure is a set of formula occurrences connected
by the links of Table 3.7 such that:

• each formula is the premiss of at most one link,

• each formula is the conclusion exactly one link.

Formulas which are not the premiss of any link are the conclusions of the
proof structure.

In other words, proof structures have two types of formulas, internal for-
mulas, which are attached to links both from above and from below, and
conclusions, which are attached only from above. A proof structure with
conclusions A1, . . . , An corresponds to the sequent ` A1, . . . , An.

The definition of proof structure has an asymmetry with respect to pre-
misses and conclusions: we can have formulas which are not the premiss of
any link (the conclusions of the proof structure) but not formulas which are
not the conclusion of any link. In the context of proof search using proof
structures, it is often useful to consider slightly more general structures called
modules.

Definition 3.3 A module is a set of formula occurrences connected by the
links of Table 3.7 such that:

• each formula is the premiss of at most one link,

• each formula is the conclusion of at most one link.

Formulas which are not the premiss of any link are the conclusions of the
module. Formulas which are not the conclusion of any link are the hypotheses
of the module.
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A⊥ ` C

A⊥ CB ⊗ C⊥

B C⊥

A⊗B⊥

A B⊥

(A⊗B⊥) ` (B ⊗ C⊥)

Figure 3.2: Components of the proof net from Figure 3.1

Modules can have hypotheses as well as conclusions. A module without
axiom links and only atomic hypotheses is sometimes called a proof frame
(Roorda 1991) and it represents the initial state of proof search using proof
structures. In the general case, we can represent stages of proof search as
modules where all hypotheses are atomic. More specifically, we add axiom
links to a proof frame until we obtain a proof structure.

We also want to refer to substructures of proof structures (and, similarly
to subnets of proof nets). There is one type of substructure, the component,
which will be particularly useful.

Definition 3.4 A component is a maximal, connected submodule of a module
which does not contain any par links.

From a proof structure (or a module) we obtain its components by sim-
ply removing all par links (but keeping its premiss and conclusion formulas).
The components are the connected substructures of the resulting structure.
Figure 3.2 shows the components of the proof net from Figure 3.1. The proof
net has three components. At least for proof nets, a proof net with p par
links has p+ 1 components, and, moreover, each component must be acyclic
(it is connected by definition, of course). Two of the components shown in
Figure 3.2 consist of only a single vertex.

3.2.2 Correctness conditions

Not all proof structures are proof nets. Figure 3.3 shows some example proof
structures which are not proof nets. Proof structure (a) is not a proof net
because the tensor case of the inductive definition requires us to combine
two disjoint proof nets whereas we have only a single A axiom. Similarly,
(b) and (c) are not a proof nets, because the par case requires us to attach
the link to a single proof net, whereas we have two disjoint axioms. We can
also show these are not proof nets by showing the sequents (a) ` A ⊗ A⊥,
(b) ` (A⊥ ` B)⊗ B⊥, A, and (c) ` A,A⊥ ` B,B are underivable. However,
neither of these options is very attractive. We want a method to identify proof
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(b)

(A⊥ `B)⊗B⊥

A⊥ `B B⊥

A⊥ B

AA⊗A⊥

A A⊥

(a)

A⊥ `B

A⊥ B

A B⊥

(c)

Figure 3.3: Proof structures which are not proof nets

A`B

A B

A`B

A B

⇒l

A`B

A B

A`B

A B

⇒r

Table 3.8: Switchings for par links

nets, using only properties of the graphs. A correctness condition provides
a way of identifying proof nets among proof structures. Several correctness
conditions exist (Girard 1987, Danos & Regnier 1989, Retoré 2003).
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Acyclicity and connectedness

The best-known correctness condition is the switching condition of Danos &
Regnier (1989). We replace each par link in one of the ways shown in Table 3.8.
A switching transforms a proof structure into a standard graph, with formula
occurrences as vertices.

Theorem 3.5 A proof structure is a proof net when all its switchings are
acyclic and connected.

Danos & Regnier (1989) prove that proof nets defined by this correctness
condition are exactly those which correspond to derivable sequents. In other
words, we now have two definitions of proof nets: 1) an inductive definition,
and 2) proof structures satisfying a correctness condition, but these two defi-
nitions refer to the same class of structures.

Given that each par link has two possible switchings, it would appear that
this correctness condition is hard to verify: for a proof structure with p par
links, there are 2p possible switchings. We can do a bit better: with respect to
acyclicity and and connectedness, when the left and right switching connect to
the same component, we only have to consider one of the two switchings. For
the proof net of Figure 3.1 we therefore have to consider only one switching,
since the premisses of both par links all connect to the same component.

The acyclicity and connectedness condition is very convenient for show-
ing a proof structure is not a proof net, since a single switching serves as a
counterexample. Figure 3.4 shows how the proof structures of Figure 3.3 are
not proof structures. Proof structure (a) is cyclic, proof structure (b) has
a switching which is cyclic and disconnected shown in the figure, and proof
structure (c) has a disconnected switching. It is worth noting that the alter-
native switching for (b) is acyclic and connected, and that, in general, all but
one of the switchings of an incorrect proof structure can by acyclic and con-
nected. However, there are very efficient (linear time) algorithms for verifying
a proof structure is a proof net (Guerrini 1999, Murawski & Ong 2000).

Graph contractions

There is an alternative correctness condition based on graph contractions. As
we will see, this criterion is particularly convenient for proof search and we
will see it return — with some variations — in the sections and chapters which
follow. Table 3.9 presents the contraction rules due to Danos (1990) for which
he proves the following theorem.

Theorem 3.6 A proof structure is a proof net if and only if it contracts to a
single vertex using the contractions of Table 3.9.

Since variants of this contraction criterion are important in many of the
later chapters, I believe it is worthwhile to perform an example contraction of
a proof structure to a single vertex in full detail and, in addition, give some
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(b)

(A⊥ `B)⊗B⊥

A⊥ `B B⊥

A⊥ B

AA⊗A⊥

A A⊥

(a)

A⊥ `B

A⊥ B

A B⊥

(c)

Figure 3.4: Switchings for the incorrect proof structures from Figure 3.3 ex-
hibiting cycles or disconnectedness.

�

�

�⇒2

�

�

�⇒1

Table 3.9: Contractions for multiplicative linear logic. The contractions can
only be applied when the two vertices on the left hand side are distinct.
Contraction 2 requires that the dotted links are paired, as indicated by the
connecting link.
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�

� ��

� �

�

� �

�

⇒1

�

� ��

� �

�

�

�

⇒1

�

� ��

�

�

�

�

⇒1

�

� ��

� �

�

⇒2

Figure 3.5: Start of the conversion sequence

examples of where the contraction condition fails for proof structures which
are not proof nets.

Figure 3.5 shows, at the top of the figure, the proof structure of Figure 3.1
with all formula labels removed. The first edge to be contracted is drawn in
blue. Removing the blue edge and identifying the two vertices produces the
structure shown on the middle of Figure 3.5. Contracting the blue edge of
this structure produces the structure shown at the bottom left of Figure 3.5
and another contraction of the blue edge produces the structure shown on the
bottom right.

From the point of view of the leftmost par link, what we have done so far
is reduce the path between the two linked premisses of the link from a three
link path until the two premisses of the par link have ‘joined’ into a single
vertex. This is the correct configuration for the 2 rewrite, and the result is
shown on the top left of Figure 3.6. Figure 3.6 shows that four more 1 rewrites
also reduce the length of the path between the two premisses of the second
par link to zero. We complete the conversion sequence by a 2 contraction,
showing the proof structure is a proof net.

It is equally important that the contraction condition fails for structures
which are not proof nets. Figure 3.7 shows the proof structures of Figure 3.3
where all applicable contractions have been applied. None of these structures

64



Multiplicative proof nets

�

� ��

� �

⇒1

�

� �

��

⇒1

�

� ��

⇒1

�

� �

⇒1

�

�

⇒2 �

Figure 3.6: End of the conversion sequence of Figure 3.5

(b)

�

�

(a)

� �

� �

(c)

Figure 3.7: Contraction failure for the incorrect proof structures of Figure 3.3

are single vertices, a no contractions can be applied to any of them: (a) has
a loop, and therefore fails the condition of the 1 contraction; for (b) and (c)
neither graph is a single vertex, and no contractions apply.

3.2.3 Intuitionism

From the point of view of linear logic, intuitionism can bee seen as a restriction
on the allowed formulas. We distinguish between negative formulas N and
positive formulas P.

N ::= p⊥ | N `N | N ⊗ P | P ⊗N (3.7)

P ::= p | P ⊗ P | P `N | N ` P (3.8)

In a commutative setting we need only one of the pair N ⊗ P and P ⊗ N
(we will keep only the second). Similarly, we can restrict ourselves to one of
P `N and N ` P (we will again keep the second).

Given the formula restrictions for positive and negative formulas, we can
see which combinations are excluded: par cannot combine two positive formu-
las, whereas tensor cannot combine two negative formulas. It is this property
which allows us to prove following property.
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3. Proof Nets

Proposition 3.7 All derivable sequents consisting only of positive and nega-
tive formulas have exactly one positive formula.

Proof This is easy to show by induction, using the inductive definition of
proof nets. �

Given that negative formulas correspond to formulas on the left hand
side of the turnstile and positive formulas to formulas on the right hand side,
Proposition 3.7 shows that the formula restriction produces intuitionistic (that
is, single conclusion) sequents.

The correspondence between the restricted fragment of linear logic and
intuitionism is even more clear when we consider the formula restriction as
follows.

N ::= p⊥ | N `N | P ⊗N N ::=
−
p |

−
N ⊗N |

−
P(N (3.9)

P ::= p | P ⊗ P | N ` P P ::=
+
p |

+

P ⊗ P |
+

N ( P (3.10)

The column on the right presents the intuitionistic formulas using ⊗ and (
and uses + and − to distinguish between positive and negative formulas.

Given all this, it is easy to produce the links for intuitionistic proof nets.
Table 3.10 presents the logical links for multiplicative intuitionistic linear logic
proof nets. The distinction between par links and tensor links is determined
by the corresponding classical formula according to Equations 3.9 and 3.10.
Therefore, the negative ⊗ and positive( links are par links, and the positive
⊗ and negative ( links are tensor links.

To try and prove a sequent A1, . . . , An ` C we decompose the formulas
according to the links of the figure, starting with

−
A1 . . .

−
An

+

C

and then we continue as for classical multiplicative linear logic: we continue
unfolding the formulas until we reach the atomic subformulas. As before, the
logical links essentially produce a subformula tree with the additional mark-
ing of the polarity of each subformula and marking the distinction between
conjunctive (tensor) and disjunctive (par) nodes.

Figure 3.8 shows the proof net from Figure 3.1 translated to its intuitionis-
tic version. The important point is that only the formula labels at the vertices
have changed (and if we want, we can translate the intuitionistic formulas back
to their classical equivalents). This means that the correctness conditions are
unchanged from the classical versions.

3.2.4 Non-commutativity

A number of authors have studied proof nets for non-commutative (or cyclic)
versions of linear logic. One easy way to obtain non-commutativity is to
split linear implication into a left and right version, and to require that the
axiom links are planar. Intuitionism combined with planar axiom links gives
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−
A

+

A
−
A

+

A

−
A⊗B

−
A

−
B

+

A⊗B

+

A
+

B

−
A( B

+

A
−
B

+

A( B

−
A

+

B

Table 3.10: Logical links for MILL proof structures

+

A( C

−
A

+

C
−

B( C

+

B
−
C

−
A( B

+

A
−
B

−
(A( B)⊗ (B( C)

Figure 3.8: Intuitionistic proof net of (A( B)⊗ (B( C) ` A( C
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us proof nets for the Lambek calculus (Roorda 1991). There are other ways
of enforcing non-commutativity. For example, Abrusci & Maringelli (1998)
extend the correctness criterion of Retoré (2003) to the non-commutative case.

A problem with planarity is that it is an all-or-nothing criterion: either
the axiom links of a proof net are planar, or they are not. However, for
the applications we have seen, we want a way of combining a commutative
logic with a non-commutative one, that is, to have a logic which is only
partially commutative, relaxing non-commutativity only when required for
the linguistic applications we have seen in Section 1.5.

Some partially commutative linear logics have been proposed in the lit-
erature. De Groote (1996) proposes a logic which combines (commutative)
multiplicative intuitionistic linear logic with the (non-commutative) Lambek
calculus. Lecomte & Retoré (2001) show how this logic can translate syntactic
analyses in the style of Stabler (1997). However, in the terms of Section 2.1,
this logic is simply a multimodal logic using an associative, commutative mode
and an associative, non-commutative mode. It therefore poses no particular
challenges for a proof net implementation as used for similar multimodal logics
(see Section 5.1 below).

Another partially commutative logic is the pomset logic of Retoré (1997).
This logic adds a non-commutative connective ‘<’ (before) to multiplicative
linear logic. The formulas in the sequents of this logic form a partially or-
dered multiset (a pomset), and the proof net calculus for the logic is a simple
extension of the multiplicative proof nets of Retoré (2003).

One important logic in this respect is the non-commutative logic of Abr-
usci & Ruet (1999), which combines the standard ` and ⊗ connectives of
commutative multiplicative linear logic with a non-commutative conjunction
� (corresponding to the Lambek calculus •) and a non-commutative disjunc-
tion ∇. This allows us to define the two non-commutative implications as
B\A ≡ B⊥∇A and A/B ≡ A∇B⊥. The logic has both a simple sequent
calculus, and a simple proof net calculus (Abrusci & Ruet 1999), using a
correctness criterion which is a variant of Girard’s (1987) trip condition.

It is unclear to what extent the logics and proof net calculi of Retoré
(1997) or Abrusci & Ruet (1999) can be used to solve the problems with the
Lambek calculus described in Section 1.5: I conjecture that some (like medial
extraction) will not pose too much of a problem, but that others, such as the
Dutch verb clusters and quantifier scope will be more problematic. But I will
leave these questions for future research.

With respect to partially enforcing non-commutativity, we will consider
two options in what follows:

1. in Chapter 4, we will use first-order variables to ensure non-commutativity
without requiring planarity,

2. in Chapter 5, we will use proof nets for multimodal categorial grammars
(and extensions thereof) which can implement the multimodal strategy
of Moortgat & Oehrle (1993); that is, we take a non-associative base
logic, and provide controlled access to the desired structural rules.
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3.3 Conclusions

This chapter has introduced the motivations and basic definitions for proof
nets. As an inherently redundancy-free representation of proofs, they appear
to be a good candidate for the enumeration of proofs in different type-logical
grammars. However, the proof nets we have seen so far are for multiplicative
linear logic, which is a fully commutative logic. Our goal, in the next two
chapters will be to provide proof nets for all different type-logical grammars
of the previous chapter.

This first framework, first order linear logic, is simple and standard. Yet,
as we will see in Chapter 4, it will prove to be powerful enough to serve as
a theorem prover for many type-logical grammars. Even for calculi which do
not have a direct translation into first-order linear logic, we can often use it
for approximation, as a way of quickly discovering underivable statement (for
example, because they are underivable in intuitionistic linear logic). So even
though first-order linear logic cannot handle all type-logical grammars, it still
operates somewhere under the surface for most of our theorem provers (Moot,
Schrijen, Verhoog & Moortgat 2015, Moot 2015b, Moot 2015c).

The second framework, based on graph rewriting, is more general. The
components of its proof nets represent fully structured antecedents which
makes it easy to represent arbitrary structural rules as tree rewrites (provided
they do not use copying or duplication). As we will see in Chapter 5, we
will be able to accommodate all modern type-logical grammar in this second
proof net framework by using suitable variations on the allowed structures
and links. This extra expressivity comes at a price, though, and makes proof
search more complicated.
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4 First-order linear logic

4.1 Introduction

This chapter will focus on multiplicative intuitionistic first-order linear logic
— hereafter simply first-order linear logic or MILL1 — as a first general
computational framework for type-logical grammars, with the next chapter
devoted to the more flexible graph rewriting framework. First-order linear
logic has a number of good properties which make it suited as a framework
for computational linguistics:

1. first-order linear logic is a well-understood fragment of linear logic,

2. has a tight connection to formal language theory (for the Horn clause
fragment),

3. embeds the Lambek calculus (Moot & Piazza 2001),

4. is NP complete, that is, no increase in the complexity of proof search
with respect to the Lambek calculus,

5. has a simple proof net calculus.

First-order linear logic also embeds a number of other type-logical gram-
mars, namely lambda grammars, (an important fragment of) the Displace-
ment calculus and hybrid type-logical grammars (Moot 2014a, Moot 2014b).
In addition, it has a dedicated theorem prover based on proof nets, with
facilities for designing grammars in lambda grammars, hybrid type-logical
grammars and displacement grammars (Moot 2015c).
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4. First-order linear logic

A ` A [Ax]
Γ ` A ∆, A ` C

Γ,∆ ` C [Cut]

Γ, A,B ` C
Γ, A⊗B ` C [L⊗] Γ ` A ∆ ` B

Γ,∆ ` A⊗B [R⊗]

∆ ` A Γ, B ` C
Γ,∆, A( B ` C [L(]

Γ, A ` B
Γ ` A( B

[R(]

Γ, A ` C
Γ,∃x.A ` C [L∃∗]

Γ ` A[x := t]

Γ ` ∃x.A [R∃]

Γ, A[x := t] ` C
Γ,∀x.A ` C [L∀] Γ ` A

Γ ` ∀x.A [R∀∗]

Table 4.1: The sequent calculus for first-order intuitionistic multiplicative
linear logic.

4.2 Proof theory

A sequent or a statement is an expression of the form A1, . . . , An ` C (for
some n ≥ 0), which we will often shorten to Γ ` C. We call Γ the antecedent,
formulas Ai in Γ antecedent formulas, and C the succedent of the statement.
We assume the sequent comma is both associative and commutative and treat
statements which differ only with respect to the order of the antecedent for-
mulas to be equal. Table 4.1 shows the sequent calculus rules for first-order
multiplicative intuitionistic linear logic. The R∀ and L∃ rule have the stan-
dard side condition that there are no free occurrences of x in Γ and C.

Cut-free proof search for the sequent calculus is decidable (the decision
problem is NP complete (Lincoln 1995)), and sequent proof search can be
used as a practical decision procedure (Lincoln & Shankar 1994). Decidabil-
ity presupposes both cut elimination (which, as usual, is a simple enough proof
even though there are many rule permutations to verify) and a restriction on
the choice of t for the L∀ and R∃ rules. A standard solution is to use unifica-
tion for this purpose, effectively delaying the choice of t to the most general
term required by the axioms in backward chaining cut-free proof search. This
of course requires us to verify the eigenvariable conditions for the R∀ and
L∃ rules are still satisfied after unification. We can see this in action in the
following failed attempt to prove ∀y[a ⊗ b(y)] ` a ⊗ ∀x.b(x) (the reader can
easily verify all other proof attempts fail as well).

a ` a Ax

Y = x
b(Y ) ` b(x)

Ax

b(Y ) ` ∀x.b(x)
∀R∗

a, b(Y ) ` a⊗ ∀x.b(x)
R⊗

a⊗ b(Y ) ` a⊗ ∀x.b(x)
L⊗

∀y.[a⊗ b(y)] ` a⊗ ∀x.b(x)
L∀
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Tracing the proof from the endsequent upwards to the axioms, we start
by replacing y by a fresh metavariable Y to be unified later, then follow the
proof upwards to the axioms. For the b predicates, we compute the most
general unifier of x and Y , which is x. But then, the antecedent of the ∀R
rule becomes b(x), which fails to respect the eigenvariable condition for x.
We can improve on the sequent proof procedure for first-order linear logic,
even exploiting some of the rule permutabilities (Lincoln & Shankar 1994).
However, in the next section (Section 4.3) we will present a proof net calculus
for first order linear logic, following Girard (1991), which intrinsically avoids
the efficiency problems caused by rule permutations.

Before we do so, however, we will briefly recall how we can use first-order
linear logic for modelling natural languages.

First-order linear logic and natural language grammars For type-
logical grammars, a lexicon is a mapping from words to formulas in the corre-
sponding logic. In first-order linear logic, this mapping is parametric for two
position variables L and R, corresponding respectively to the left and right
position of the string segment corresponding to the word. In general, for a
sentence with n words, we assign the formula of word wi (for 1 ≤ i ≤ n) the
string positions i−1 and i. This simply follows the fairly standard convention
in the parsing literature to represent substrings of the input string by pairs
of integers.

As noted by Moot & Piazza (2001), we can translate Lambek calculus
formulas to first-order linear logic formulas as follows.

‖p‖x,y = p(x, y) (4.1)

‖A •B‖x,z = ∃y.‖A‖x,y ⊗ ‖B‖y,z (4.2)

‖A \ C‖y,z = ∀x.‖A‖x,y ( ‖C‖x,z (4.3)

‖C / B‖x,y = ∀z.‖B‖y,z ( ‖C‖x,z (4.4)

Equation 4.4 states that when C/B is a formula spanning string x, y (that
is, having x as its left edge and y as its right edge), that means combining
it with a formula B having y as its left edge and any z as its right edge will
produce a formula C starting at x (the left edge of C/B) and ending at z (the
right edge of B).

4.3 MILL1 proof nets

To change from multiplicative intuitionistic linear logic to first-order multi-
plicative intuitionistic linear logic (for brevity, I will call this system MILL1,
or simply first-order linear logic) we need to change relatively little.

We will present proof nets for first-order linear logic from the perspec-
tive of using the calculus for theorem proving. To try and prove a sequent
A1, . . . , An ` C we decompose the formulas starting with

−
A1 . . .

−
An

+

C
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−
A

+

A
−
A

+

A

−
∀x.A

−
A[x := t]

+

∀x.A

+

A

x

+

A( B

−
A

+

B

−
A( B

+

A
−
B

+

∃x.A

+

A[x := t]

−
∃x.A

−
A

x

+

A⊗B

+

A
+

B

−
A⊗B

−
A

−
B

Table 4.2: Logical links for MILL1 proof structures

and continuing the unfolding until we reach the atomic subformulas using
links of Table 4.2. This produces a formula decomposition tree with some
annotations: we distinguish between positive and negative subformulas (for-
mulas of negative polarity correspond to antecedent formulas in the sequent
calculus, and those of positive polarity to succedent formulas), and some links
are dotted.

Even though there are eight different logical links, these are divided into
four different types:

1. the binary links drawn with solid lines are tensor links,

2. the binary links drawn with dotted lines are par links,

3. the unary links drawn with solid lines are existential links,

4. the unary links drawn with dotted links are universal links, universal
links are labeled with the name of the eigenvariable and have an arrow
pointing towards the conclusion of the link.

The tensor and par links are the same as those for multiplicative intu-
itionistic linear logic, only the quantifier links are new. We use the standard
convention that each quantifier in a sequent uses a different eigenvariable
(Girard 1991, Bellin & van de Wiele 1995).

After this unfolding step, we connect atomic formulas of opposite polarity
using the axiom link (Table 4.2, top left). When all atomic formulas have been
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−
∀x.a(x)( b

+

∀x.a(x)
−
b

+

∃y.[a(y)( b]

+

a(x)( b

−
a(x)

+

b
+

a(x)

x

Figure 4.1: Proof structure which is not a proof net

connected this way, the resulting structure is called a proof structure. As an
example, the sequent ∀x.a(x) ( b ` ∃y.[a(y) ( b] has the proof structure
shown in Figure 4.1.

In practice, we do not choose a term for the negative ∀ or for the pos-
itive ∃ link during formula unfolding but we rather use meta-variables for
unfolding and unification during the axiom link connections. So the axiom
link does not connect identical formulas but rather unifiable formulas and
performs this unification. This is a rather standard theorem-proving strat-
egy and has the result that we can read off the most general term for each
negative ∀ and positive ∃ rule in our proof net. Some care must be taken
when we repeatedly unify the positive and negative atomic subformulas of
∀x.a(x) ( a(f(x, x)), where the size of the term argument grows exponen-
tially in the number of occurrences of the given formula ( a(x), a(f(x, x)),
a(f(f(x, x), f(x, x))), a(f(f(f(x, x), f(x, x)), f(f(x, x), f(x, x)))), . . .). Even
in these cases, we can ensure linear time unification by adopting a sharing
strategy (Martelli & Montanari 1982, Patterson & Wegman 1978). In addi-
tion, for the typical uses of first-order linear logic which interest us — notably
the applications discussed in Sections 4.4 and 4.5 — each quantifier binds
exactly two occurrences of its variable, so we might even decide to exclude
the case above, where the quantifier ∀x binds three occurrences.

Returning to the example proof structure of Figure 4.1, the given sequent
is underivable in linear logic and, in general, proof structures need not cor-
respond to proofs. As before, proof structures which correspond to proofs
are called proof nets and we can distinguish them from other proof structures
using properties of the graph.

Acyclicity and connectedness

Table 4.3 shows Girard’s (1991) extension of the multiplicative switchings of
Danos & Regnier (1989) to the first-order case. The switching for the ∀ link
allows us to connect the conclusion of the link to any vertex containing a free
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�

� �

�

� �

⇒l

�

� �

�

� �

⇒r

⇒∀
�

�

x

�

�

Table 4.3: Switchings for par and universal links. In addition to the ∀ switch-
ing shown, the ∀ link has a switching connecting the conclusion of the link to
any vertex which a free occurrence of its eigenvariable x.

occurrence of x. In addition, we can always connect the conclusion of the
link to its premiss — this last case is only needed to correctly derive cases of
vacuous quantification such as p ` ∀x.p.

Girard (1991) proves the following (Bellin & van de Wiele 1995, Section 3,
also give a detailed treatment of first-order proof nets and subnets including
all relevant proofs).

Theorem 4.1 A first order linear logic proof structure is a proof net iff all
its switchings are acyclic and connected.

The proof structure of Figure 4.1 is not a proof net; it should therefore
have a switching with is cyclic and/or disconnected. There are three possible
switches for the ∀ link and two for the ` link. Figure 4.2 shows the switching
with is cyclic (and disconnected) and therefore establishes the proof structure
is not a proof net.

Graph contractions

Moot (2014a) presents a contraction criterion for first-order linear logic in the
style of Danos (1990).

The contractions for first-order linear logic are shown in Table 4.4. As a
first step, we forget about all formulas in the proof structure keeping track
only of the free variables at each vertex in the graph. For Figure 4.1 this
produces the graph shown on the left hand side of Figure 4.3. Then we
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+

∀x.a(x)
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b
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a(x)( b

−
a(x)

+

b
+

a(x)

Figure 4.2: Switching showing the proof structure of Figure 4.1 is not a proof
net.

vi

vj

vi

vj

⇒p

vi

vj

x

vi

vj

⇒u

vi

vj

vi⇒c

Table 4.4: Contractions for first-order linear logic. Conditions: for the c
contraction, vi 6= vj and, for the u contraction, all free occurrences of x are
at vj .

progressively shrink the proof structure using the contractions shown in the
figure. Each contraction removes an edge (a linked pair of edges in the case
of the p contraction) and identifies the two nodes which were connected by
it. A c contraction can only be performed on two distinct vertices; that is, we
are not allowed to eliminate self-loops. The free variables of the result vertex
of the c are the union of the sets of free variables of the two input vertices.
The u contraction verifies all occurrences of its eigenvariable x occur at vj ,
then removes the eigenvariable from the result (this amounts to verifying the
eigenvariable condition for R∀/L∃). A proof structure is a proof net if and
only if it contracts to a single point using the contractions of Table 4.4.

As an example, Figure 4.3 shows the contractions performed on the proof
structure of Figure 4.1, with the initial structure on the left and the structure
after all c contractions on the right. The arrow and eigenvariable of the ∀ link
and the connection between the two other dotted links ensure the notation
is unambiguous. The displayed graph is not a single vertex but it cannot be
further contracted: the universal contraction u cannot apply since the variable
x occurs at the bottom vertex instead of only at the right vertex as required
for the contraction and the contraction p cannot apply until its two branches
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∅

∅ ∅

∅

{x}

{x}∅{x}

x ⇒∗

{x}∅

{x}

x

Figure 4.3: Contractions for the proof structure of Figure 4.1

end at the same vertex. Since the contractions of Table 4.4 are confluent, any
graph which is not further contractible but is not a unique vertex, such as the
one shown at the right of Figure 4.3, suffices to show that the given sequent
is underivable for the given reading (that is axiom linking).

First-order linear logic for parsing

Summarising, parsing/proof search in first-order linear logic operates as fol-
lows.

1. For each word in the sentence, we find a first-order formula in the lexicon.

2. We unfold a sequent using the rules of Table 4.2.

3. We connect atomic formulas of opposite polarity, unifying variables.

4. We contract the resulting proof structure to a single vertex.

Combinatorially, the complex steps are step 1 (in the case of high lexical
ambiguity) and step 3 where we connect the atomic formulas. For an actual
implementation (for example Moot 2015c) it is therefore desirable to contract
early — thereby keeping a compact representation of the current state of the
proof — and to develop ways of detecting ‘doomed’ configurations, that is
graphs which can never be contracted to a single vertex, no matter how we
continue the construction of our proof structure. Examples of such configura-
tions are connections between a node and its ancestor with a path of dotted
links (this corresponds to a cycle in the proof structure and though we can
validly reduce the size of this cycle, such a configuration will, at best, end
up producing a self-loop) or isolated vertices (an isolated vertex is a vertex
which is not connected to the rest of the graph but which also doesn’t have
any unlinked atomic formulas; unless it is the last vertex of the graph, such a
vertex corresponds to a disconnected proof structure). More subtle strategies
can be used, such as a type of look-ahead (Moot 2007a), and partial order
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Figure 4.4: Formula unfolding for “everyone slept soundly” in first-order linear
logic

constraints (Moot 2021). Combining early failure with a smart backtracking
strategy for selecting which atomic formulas to unify (Knuth 2019) produces
an effective algorithm.

Figure 4.4 shows the first-order linear logic formula unfolding for a slightly
more complicated example. It corresponds to the sentence “everyone slept
soundly” in both the Displacement calculus and hybrid type-logical grammars
seen from the point of view of first-order linear logic in a way to be made
more precise in Sections 4.4 and 4.5 respectively. The assignments to “slept”
(Lambek formula np\s at positions 1, 2, translated using Equations 4.1-4.4)
and “soundly” (Lambek formula (np\s)\(np\s) at positions 2, 3). Finally, the
formula for “everyone” at positions 0, 1 is the one proposed by Moot & Piazza
(2001) for quantifiers in first-order linear logic, but it also corresponds to the
Displacement calculus formula (s ↑ np) ↓ s and to the hybrid grammar lexical
entry λP.(P everyone) : (np( s)( s.

Given a formula unfolding, the search space for a statement consists of
enumerating the possible matchings of positive and negative atomic formulas.
We can summarise the search space by a number of square matrices, one for
each type of atomic formula occurring in the statement. In the current exam-
ple, we have 2 positive and 2 negative occurrences of np, and 3 positive and 3
negative occurrences of s. If the number of positive and negative occurrences
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Figure 4.5: Partially contracted version of the proof structure from Figure 4.4

of an atomic formula are not equal, there can never be a proof. The condition
that the number of positive and negative formula occurrences for each atom
must be equal is generally called the ‘count check’ (van Benthem 1995), and
it is a very useful test allowing us to quickly (and correctly!) conclude that a
statement must be underivable.

Figure 4.4 show the matrices for np and s at the top of the figure. To
obtain a proof structure, we must find a perfect matching between each col-
umn (representing the positive occurrences) and each row (representing the
negative occurrences). This is the complicated part of proof search. For n
positive (or negative) occurrences, there are n! possible matchings. For the
example, there are 2 (= 2!) ways of matching the np formulas and 6 (= 3!)
ways of matching the s formulas. Therefore, even this simple example already
has 12 possible proof structures — the choices for the np formulas and for the
s formulas are independent, giving 2 × 6 = 12 possibilities — and for more
complicated structures, this can become intractable very quickly.

However, in a research context, it is vital for grammar developers to be
able to find all derivations which their grammar generates, since different
proofs correspond to (at least potentially) different readings predicted by their
grammar. If we want to claim that first-order linear logic is a useful formalism
for computational linguistics then it is essential for implementations of proof
search in first-order linear logic to side-step as much of this combinatorial
explosion as is possible.

One standard way to do this is enumerate the different possibilities for each
of the atomic formulas (positive or negative) and connect the formula which
has the least available possibilities. This amounts to implementing the so-
called ‘dancing links’ strategy of Knuth (2019) and it has been implemented
in several type-logical theorem provers (Moot 2015b, Moot 2015c). In the
context of first-order linear logic, there are a number of simple but effective
ways to exclude axiom links which can never lead to a proof net.

First of all, we contract the formula unfolding as much as possible. This
allows us to provide a compact representation of the state of the current proof
attempt. We need to be careful and keep track, at each node, of the atomic
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Figure 4.6: The partially contracted version of the proof structure from Fig-
ure 4.5 after identification of the np formulas

formulas which have not yet been linked and of the free variables which may
(at least potentially) be unified with the eigenvariable of a ∀ link. Figure 4.5
shows the contracted version of the formula unfolding from Figure 4.4. Only
the par and universal links remain.

When we look at the negative np(x, Z) formula and investigate the two
available positive formulas np(X, 1) and np(Y, Z), we can immediately see
that identifying np(x, Z) with np(Y, Z), would unify Y with x, and thereby
produce a structure which can never be contracted to a single vertex: Y = x
means there is an occurrence of x at the ‘wrong’ side of the universal link
(indicated by the arrow) and which would therefore fail the condition of the
u contraction — this corresponds to a failure of the variable condition in a
sequent calculus proof. Another way to see this connection leads to failure
of contraction is that we have connected a node to one of its ‘ancestors’: we
can never contract both the par link and the universal link already connecting
np(x, Z) to np(Y,Z) after these nodes are merged, since this would produce
a cycle.

Only one of the two possibilities for linking the np formulas can therefore
lead to a proof net: the one connecting np(x, Z) to np(X, 1), which unifies
X = x and Z = 1, and connecting np(0, 1) to np(Y, Z) (the only remaining
possibility after the two other np formulas have been identified), which unifies
Y = 0 and Z = 1 (the previous axiom link already unified Z to 1). Figure 4.6
shows the result of this identification of the np formulas.

Each identification of two atomic formulas merges the two vertices (tech-
nically, we add an edge for the axiom link, then contract this edge using the
c contraction). For the identification of np(X, 1) and np(x, Z), the negative
atomic formula s(X, 2) (which becomes s(x, 2) after unification) remains at
the merged node. In general, we take the multiset union of the atomic for-
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Figure 4.7: The partially contracted version of the proof structure from Fig-
ure 4.6 after identification of the s(x, 2) formulas

mulas at the two nodes and remove the two matched atomic formulas. For
the other identification, of np(0, 1) and np(Y, Z), the negative formula s(Y, 3)
(which becomes s(0, 3) after unification) remains at the merged vertex. The
variables Y and Z, having been unified to 0 and 1 respectively, are not longer
at risk of unification with the eigenvariable of a ∀ link and therefore no longer
appear in the structure.

What are the remaining possibilities? There are different ways to again
obtain a unique matching. First of all, when we look at the positive s(x, 2)
formula (we arrive at similar conclusions by looking at the negative s(x, 2)
formula instead), it has three potential axiom links. However, we can exclude
two of these: s(0, 3) is impossible (since x 6= 0 and 2 6= 3) and although
s(V,W ) would unify, it would again produce an x on the ‘wrong’ side of the
∀x link (and would also be another link to an ancestor, indicating a cycle).
Therefore, the only possibility which can lead to a proof net is connecting
the positive s(x, 2) formula to its negative sister node s(x, 2) which produces
a par redex and furthermore allows us to contract the ∀x link immediately
afterwards. This produces the structure shown in Figure 4.7.

There are again several ways to see there is only one possibility. Firstly,
when we connect the positive s(V,W ) formula to the negative one, we create
a loop and will therefore create a structure to which the par contraction can
never apply. Similarly, connecting the positive and negative s(0, 3) formulas
will also produce a structure to which the par contraction can never apply,
this time because the two daughters can never ‘join’ as required for the par
contraction. This means the only possible matching is the positive s(0, 3)
formula with the negative s(V,W ) formula and the negative s(0, 3) formula
with the positive s(V,W ) formula. These two identifications unify V with 0
and W with 3, and in addition produce a par redex. We have now connected
all atomic formulas and, after the final par redex, contracted the structure to
a single vertex, thereby showing our initial structure is a proof net. Moreover,
at least in this simple case, we have avoided doing any axiom links which are
not part of the final proof net. When we assign only a polynomial amount
of time to each axiom link, it is of course extremely unlikely that we can find
a procedure which guarantees we only perform axiom links which are part
of a proof net, since this would provide a polynomial solution to a known
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NP-complete problem.

Although the early failure strategies used are rather simple, they work well
even for much more complicated examples (Moot 2014a, Moot 2021). They
are also easy to implement and have been integrated in a number of theorem
provers for type-logical grammars (Moot 2008, Moot 2015b, Moot 2015c)

Resolution and proof nets In a sense, proof search for linear logic using
contracted structures like we do here is resolution-like1: when we restrict
to the ⊗, ∃ fragment — that is negative (, ∀ and positive ⊗, ∃ — then
negative formulas are Horn clauses and positive formulas are goals and all
such formulas contract to a single vertex. Each connection of atomic formulas
then corresponds to a resolution step, combining two vertices (clauses or goals)
into a single one. Seen from this perspective, the par and universal links are
extensions of (linear, Horn clause) resolution.

4.4 The Displacement calculus

The Displacement calculus extends the Lambek calculus by changing the
structures of the logic from strings to string tuples. This idea translates to
first-order linear logic as a move from formulas with pairs of position variables
to formulas with 2k position variables (Morrill & Fadda 2008, Moot 2014a).
So a string segment a is represented by two position variables x0, x1 represent-
ing a string with x0 as its leftmost position and x1 as its rightmost position,
and a string segment a1 + 1 + a2 is represented by four position variables
x0, x1, x2, x3, with x0, x1 representing a1, x2, x3 representing a2 and x1, x2
the insertion point ‘1’. The technical details of the translation in its general
form (Moot 2014a, Equations 1 to 15) are a bit complicated because of the
many position variables involved2. However, we can already translate nearly
all of the phenomena of Morrill et al. (2011) using just the simple instanti-
ations of the general translation shown below. Given that we only consider
formulas with at most one insertion point, there is no need to distinguish be-
tween the multiple versions of the discontinuous connectives, and we therefore

1Technically, resolution moves all formulas to the left hand side of the turnstile and tries
to find refutations, whereas proof net proof search moves all formulas to the right hand side
of the turnstile and tries to find proofs.

2We need an additional mechanism to enforce linear order constraints to correctly embed
the ↑ I rule with 6 or more string positions as well (Moot 2021).
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x0 x1 x2
A A\C
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(a)
x0 x1 x2 x3

A A ↓ C A

C ↑ B B C ↑ B

(b)
x0 x1 x2 x3 x4

A A\bCA

C/bB BC/bB

Figure 4.8: String positions for some Displacement calculus connectives

drop the indices, writing simply ↑ instead of ↑k, etc.

‖C/B‖x0,x1 = ∀x2.[‖B‖x1,x2 ( ‖C‖x0,x2 ] (4.5)

‖A\C‖x1,x2 = ∀x0.[‖A‖x0,x1 ( ‖C‖x0,x2 ] (4.6)

‖C ↑ B‖x0,x1,x2,x3 = ‖B‖x1,x2 ( ‖C‖x0,x3 (4.7)

‖A ↓ C‖x1,x2 = ∀x0, x3.[‖A‖x0,x1,x2,x3 ( ‖C‖x0,x3 ] (4.8)

‖C/bB‖x0,x1,x2,x3 = ∀x4.[‖B‖x3,x4 ( ‖C‖x0,x1,x2,x4 ] (4.9)

‖A\bC‖x3,x4 = ∀x0, x1, x2.[‖A‖x0,x1,x2,x3 ( ‖C‖x0,x1,x2,x4 ] (4.10)

‖ ∧A‖x0,x2 = ∃x1.‖A‖x0,x1,x1,x2 (4.11)

‖ .−1 A‖x1,x2 = ∀x0.‖A‖x0,x0,x1,x2 (4.12)

For ease of reference, Equations 4.5 and 4.6 just repeat the standard trans-
lation of the Lambek calculus implications into first-order linear logic. Fig-
ure 4.8 shows, at the top of the figure, the different string segments involved.
Both connectives correspond to ‘concatenating’ a segment x0, x1 to a segment
x1, x2.

The translations for ↑ (4.7) and ↓ (4.8) are the simplest versions of the
discontinuous connectives. As indicated by the (a) case in the middle of
Figure 4.8, the formula C ↑ B corresponds to a pair of strings a1 + 1 + a2
(and therefore to four position variables), the first segment a1 at positions
x0, x1 and the second segment a2 at x2, x3. Its B argument ‘fills the hole’
x1, x2 (that is, the insertion point) between the two segments, resulting in a
formula C at positions x0, x3 (which corresponds to a1 + b + a2 as desired).
This implements the intuition of C ↑ B as a C formula which is incomplete
for a B formula (while keeping track of its position).
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Similarly, the argument A of formula A ↓ C corresponds to a1 +1+a2 and
therefore to two string segments x0, x1 and x2, x3 (with the starting position
x0 and ending position x3), with the argument A circumfixing itself around
the positions x1, x2 of the formula A ↓ C (segment b) to produce a result
formula C at x0, x3 corresponding to a1 + b + a2. The intuition is that the
argument A appears ‘around’ the formula A ↓ C, connected at both the left
and right positions of A ↓ C.

The /b and \b translation of Equations 4.9 and 4.10, which corresponds
to the (b) case at the bottom of Figure 4.8 are generalisations of the Lam-
bek calculus implication where A and C/bB represent a pair of string (and
therefore require four position arguments). As we can see for the (b) cases
at the bottom of Figure 4.8, when we forget about the initial segment x0, x1,
which is passed along unchanged, we just have the standard Lambek calculus
implications.

Finally, the bridge connective ∧ (used for extraction) and the right pro-
jection connective .−1 (used for Dutch verb clusters) operate by adding the
empty string as a segment, with .−1 adding an empty segment as the first
segment (and quantifying universally) and ∧ adding it as the middle segment
(and quantifying existentially).

Example: quantifiers We can combine 4.7 and 4.8 to translate the gener-
alised quantifier formula (s ↑ np) ↓ s (assuming input positions 1, 2) as shown
below.

‖(s ↑ np) ↓ s‖1,2

∀x0, x3.‖s ↑ np‖x0,1,2,x3 ( ‖s‖x0,x3

∀x0, x3.[‖np‖1,2( ‖s‖x0,x3 ]( ‖s‖x0,x3

∀x0, x3.[np(1, 2)( s(x0, x3)]( s(x0, x3)

This captures the intended meaning of the quantifier formula: a quantifier
occurring at positions 1, 2 takes as its argument a sentence s (at any posi-
tions x0, x3) missing a noun phrase at positions 1, 2 (that is, the position of
the quantifier formula itself) to produce a sentence at the positions x0, x3 of
the argument sentence. This assignment solves many of the quantifier scope
problems of the Lambek calculus discussed in Section 1.5.2. Incidentally, this
formula is identical to the one proposed by Moot & Piazza (2001) for gener-
alised quantifiers in first-order linear logic.

Example: ellipsis As a more complicated example, will give a translation
of the lexical entry for “did” — as used in sentences like “John left before
Mary did” — in the Displacement calculus. Morrill et al. (2011) propose we
assign it the following formula (where vp = np\s).

((vp ↑ vp)/vp)\(vp ↑ vp)

Given that vp ↑ vp represents a pair of strings (it represents a verb phrase vp
with a vp gap somewhere inside it), we need to use the b versions of the Lambek
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calculus slashes, and translate this formula as ((vp ↑ vp)/bvp)\b(vp ↑ vp). We
can then translate this formula into first-order linear logic as follows.

‖((vp ↑ vp)/bvp)\b(vp ↑ vp)‖4,5

∀F, I, J.‖(vp ↑ vp)/bvp‖F,I,J,4( ‖vp ↑ vp‖F,I,J,5

∀F, I, J.[∀x1.‖vp‖4,x1 ( ‖vp ↑ vp‖F,I,J,x1 ]( ‖vp‖I,J ( ‖vp‖F,5

∀F, I, J.[∀x1.‖vp‖4,x1 ( ‖vp‖I,J ( ‖vp‖F,x1 ]( ‖vp‖I,J ( ‖vp‖F,5

We have left the final vp = np\s subformulas untranslated. We can see that
except for some fairly complicated manipulations with string positions, the
formula simply indicates it selects a function of two vp’s into a single vp to
become a vp modifier.

Figure 4.9 shows the formula unfolding for “John left before Mary did”
using the formula we just computed. The proof has been slightly simplified
by removing the negative universal and positive existential quantifiers and
by not unfolding the vp formulas where doing so would simplify the proof
(not unfolding the vp formulas hides a non-trivial part of the combinatorics of
proof search for this example). The square tables above the figure represent
the (somewhat simplified) combinatorics of proof search for this example.

However, a number of axiom links are easily seen as forced: np(0, 1) can-
not unify with np(X ′, 4) which forces the axioms np(3, 4) − np(X ′, 4) and
np(0, 1)−np(Y ′, X). Given Y ′ = 0 (as one of the unifications of the np axiom
links), s(Y ′, 5) become s(0, 5) which no longer unifies with s(3,W ), thereby
forcing s(Y ′, 5)−s(0, 5) and s(X ′, x)−s(3,W ) for the s axioms. Given W = x
(by the unifications of the s axioms), there is now only one possibility for the
negative vp(V,W ), which becomes vp(V, x) given W = x: vp(V, 2) is excluded
because of unification failure x 6= 2, but the positive vp(Y, Z) would violate the
quantifier scope condition for x, because the eigenvariable x would appear on
the wrong side of the ∀x link. This forces the axiom vp(V,W )−vp(X,x). For
the final two vp connections, we only need to realise that connecting positive
vp(Y,Z) to negative vp(Y,Z) produces a cycle (since they are already con-
nected by a switching of the module). We therefore complete the axiom links
by connecting negative vp(1, 2) to positive vp(Y,Z), and negative vp(Y,Z) to
positive vp(V, 2).

Figure 4.10 shows the complete proof net after all axioms links have been
performed (we should verify the correctness condition is satisfied, either veri-
fying all switching are acyclic and connected, or contracting the structure to
a single vertex, but this is easily done).

Example: gapping As a final example, Morrill et al. (2011) propose the
formula ((s ↑ tv)\(s ↑ tv))/ ∧(s ↑ tv) for “and” as it occurs in gapping con-
structions like “John studies logic and Charles, phonetics” (where tv abbre-
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The Displacement calculus

viates (np\s)/np).

‖((s ↑ tv)\b(s ↑ tv))/ ∧(s ↑ tv)‖3,4

∀B.[‖ ∧(s/atv)‖4,B ( ‖(s/atv)\b(s/atv)‖3,B ]

∀B.∃A.‖s/atv‖4,A,A,B ( ∀E,C,D.[‖s/atv‖E,C,D,3( ‖s/atv‖E,C,D,B ]

∀B.∃A.[‖tv‖A,A(‖s‖4,B ]( ∀E,C,D.[‖tv‖C,D(‖s‖E,3](‖tv‖C,D(‖s‖E,B

Proving correctness of the translation In order the prove the trans-
lation correct, we need to show that the position variables in the first-order
linear logic proof reflect the operations on string tuples for each of the rules
in the Displacement calculus. In addition, we need to show that we preserve
a unique linear order for the position variables. From first-order linear logic
back to the Displacement calculus, the key property that makes the proof
work is that the translation produces combinations ∀/( or ∃/⊗, and these
combinations can be treated as abbreviated proof rules. In other words, the
rules of the Displacement calculus are derived rules under the translation into
first-order linear logic, and from the point of view of first-order linear logic,
when formulas have been translated from the Displacement calculus, we can
obtain all proofs using only these derived rules. For example, for the ↓ case
shown below, we can, without loss of generality, restrict the proofs in first-
order linear logic to those where the two ∀I and the( I rules occur together
as shown below3.

Given b = (x1, x2), a1 = (x0, x1), a2 = (x2, x3), and therefore a1+1+a2 =
(x0, x1, x2, x3) and a1 + b+a2 = (x0, x3), the cases for ↑ and ↓ look as follows
(Moot (2014a) provides complete proofs).

b : B....
a1 + b+ a2 : C

a1 + 1 + a2 : C ↑ B ↑ I

‖B‖x1,x2

....
‖C‖x0,x3

‖B‖x1,x2 ( ‖C‖x0,x3
( I

‖C ↑ B‖x0,x1,x2,x3
≡def

a1 + 1 + a2 : A....
a1 + b+ a2 : C

b : A ↓ C ↓ I

‖A‖x0,x1,x2,x3

....
‖C‖x0,x3

‖A‖x0,x1,x2,x3 ( ‖C‖x0,x3
( I

∀x3.[‖A‖x0,x1,x2,x3 ( ‖C‖x0,x3 ]
∀I

∀x0∀x3.[‖A‖x0,x1,x2,x3 ( ‖C‖x0,x3 ]
∀I

‖A ↓ C‖x1,x2
≡def

3This is essentially the insight of Andreoli (1992). For the ∀/ ( cases in natural
deduction this property is guaranteed by using long normal form proofs, although this is
not as obvious for the ∃/⊗ cases. For proof nets, we simply use the fact that we can remove
multiple par/forall links in one step, and for the tensor/exists case we use a variant of the
‘splitting tensor’ property.
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4. First-order linear logic

4.5 Hybrid type-logical grammars

Hybrid type-logical grammars are a combination of the Lambek calculus with
lambda grammars/abstract categorial grammars (ACGs). Standard results in
the ACG literature show that we can translate abstract categorial grammars
into first-order linear logic (Kanazawa 2007, Kanazawa 2011, Moot 2014b,
de Groote 2015) using principal types (Hindley 1997). From the point of
view of lambda grammars, we can see hybrid type-logical grammars as an
extension which allows us to replace atomic formulas of the string type by
Lambek calculus formulas.

Example: quantifiers An HTLG/lambda grammar quantifier like “ev-
ery” is assigned the formula n ( (np ( s) ( s and the prosodic term
λNsλP s→s.P (every +N). The type s denotes the type of string and the infix
operator ‘+’ denotes string concatenation.

It is convenient to replace the basic type s (string) by σ → σ (a func-
tion from string positions to string positions, more specifically from the end
position to the starting position). This has the advantage that we can re-
move explicit references to string concatenation: ‘+’ is definable as function
composition (but only for terms of type σ → σ) λQσ→σλPσ→σλzσ.(P (Qz)).
Similarly, the empty string can be defined as λz.z (that is, the string where
the start position and end position are identical).

With this in mind, the prosodic term for “every” becomes

λNσ→σλP (σ→σ)→σ→σλzσ.((P λv.(every (N v))) z)

The subterm λv.(every (N v)) is simply the translation of every +N , and z is
the position corresponding to the end of the string.

Now, it is easy to verify this term is well-typed, and that its Church type
is (σ → σ) → ((σ → σ) → σ → σ) → σ → σ. However, we want to compute
its principal type (Hindley 1997), that is, a type from which we can uniquely
reconstruct the term (up to the standard lambda calculus equivalences αβη).
Intuitively, this amounts to replacing the atomic σ subtypes which distinct
type variables as much as possible. In practice this means we start by as-
suming that all atomic subtypes are different and then compute the most
general unifier for each application step. This ensures that the application is
well-typed and that the least amount of variables are identified.

Finally, we need some way of encoding the positions of the initial string.
One of the standard ways of doing this in the parsing literature is to assign
an n word sentences position variables from 0 to n, with word n appearing
between positions n − 1 on the left and n on the right. For a sentence like
“every student read a book” this would look as follows.

every read bookstudent a

0 1 2 3 4 5
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Hybrid type-logical grammars

Translating this idea back to types, given that “every” occurs between
string positions 0 and 1, the type of its constant is 1→ 0 (conforming to the
convention that a string is given a functional type from its rightmost position
1 to its leftmost position 0).

We now have everything in place to compute the principal type. When we
forget, at least for the moment, the initial lambda abstractions, the tree of the
term ((P λv.(every (N v))) z) looks as follows, where ‘@’ denotes application.

@C

@B→C

P (A→0)→B→C λv.A→0

@0

every1→0 @1

NA→1 vA

zB

Given that we have assigned “every” the type 1 → 0, the type of (N v)
must be 1 and therefore N must is of type A→ 1 and v of type A (for a new
type A). The type of (every (N v)) is then 0, and abstraction over v (with
type A) gives A → 0. Completing the principal type calculations produces
the following type judgment, given every of type 1→ 0.

every1→0 ` λNA→1λP (A→0)→B→C .λzB .((P λvA.(every1→0 (N v))) z)

Looking only at the types leaves us with the following.

1→ 0 ` (A→ 1)→ ((A→ 0)→ B → C)→ B → C

This statement has only one (η long, β normal) proof, namely the follow-
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4. First-order linear logic

ing.

[B]2

1→ 0

[A]1 [A→ 1]4

1

0
→ E

A→ 0
→ I1

[(A→ 0)→ B → C]3

B → C
→ E

C
→ E

B → C
→ I2

((A→ 0)→ B → C)→ B → C
→ I3

(A→ 1)→ ((A→ 0)→ B → C)→ B → C
→ I4

It is easy to show that if this type (seen as a formula) has a proof, it
must be unique, since each atomic formula has one positive and one negative
occurrence4, which ‘forces’ a matching (Hirokawa 1991, gives a proof of this,
but it is also easy to see using proof nets: each atomic formula has one
positive and one negative occurrence and there is therefore only one possible
proof structure).

Given the proof shown above, using the Curry-Howard isomorphism, we
can read back the lambda term we started with (choosing “every” as the
variable for the hypothesis of type 1 → 0, z as the variable of type B, N as
the variable of type A→ 1 and P as the variable of type (A→ 0)→ B → C
even gives us back the identical term).

To translate this to first-order linear logic, we simply combine the linear
formula n ( (np ( s) ( s using the principal type as arguments of the
corresponding atomic formulas as follows.

1→ 0 ` (A→ 1)→ ((A→ 0)→ B → C)→ B → C

∀A∀B∀C. [n(1, A)( [np(0, A)( s(C,B)]( s(C,B)]

For ease of reading, we have reversed the order of the R → L subtypes so
they become arguments in left-to-right order; for example, the type A→ 1 of
atomic formula n becomes the predicate n(1, A).

Example: relativisers A word like “that” is assigned the formula (np(
s)( n( n and prosodic term λP s→sλNs.N + that + (P ε), where ε denotes
the empty string.

Translating this to a version with string positions produces the following
term.

λP (σ→σ)→σ→σλNσ→σλzσ.(N (that ((P λv.v) z)))

4In a statement A1, . . . , An ` C, the formulas Ai are negative and C is positive. For
complex formulas or types, if A ( B (or A → B) is positive, then A is negative and B is
positive, whereas if A ( B (or A → B) is negative, then A is positive and B is negative.
It is easy to show that negative formulas end up at the left hand side of the turnstile ‘`’ of
a sequent proof, whereas positive formulas end up at the right hand side.
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Hybrid type-logical grammars

Assuming that “that” occurs between positions 2 and 3 (which gives it the
type 3 → 2), we compute the principal type of this term as follows (to save
space, we have again removed the initial abstractions).

@C

N2→C @2

that3→2 @3

@B→3

P (A→A)→B→3 λv.A→A

vA

zB

This gives the following principal type and corresponding formula in first-
order linear logic.

3→ 2 ` ((A→ A)→ B → 3)→ (2→ C)→ (B → C)

∀A∀B∀C. [np(A,A)( s(3, B)]( [n(C, 2)( n(C,B)]

Example: gapping Up until now, we have only used the expressivity of
lambda grammars without using any of the Lambek calculus formulas allowed
in hybrid type-logical grammars. However, from the point of view of first-
order linear logic, this is a relatively simple extensions, and translating hybrid
type-logical grammars into first-order linear logic amounts to ‘composing’ the
translation of lambda grammars into first-order linear logic with the one of
Lambek grammars into first-order linear logic (Moot 2014b). The gapping
analysis of Kubota & Levine (2020) assigns a word like “and” in a sentence
like “John studies logic and Charles phonetics” the following syntactic type
(leaving tv, for transitive verb, unanalysed for the moment).

(tv( s)( (tv( s)( tv( s

The prosodic term for “and” is the following.

λQs→sλP s→sλTV s.(P TV ) + and + (Qε)
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4. First-order linear logic

And this corresponds to the following ‘string position’ term.

λQ(σ→σ)→σ→σλP (σ→σ)→σ→σλTV σ→σλzσ.((P TV ) (and ((Qλy.y) z)))

We compute the following principal type for “and” at string segment 3, 4.

4→ 3 ` ((A→ A)→ B → 4)→ ((D → C)→ 3→ E)→ (D → C)→ B → E

∀A∀B∀C∀D∀E. [tv(A,A)( s(4, B)]( [tv(C,D)( s(E, 3)]( tv(C,D)( s(E,B)

To complete the translation, we simply use tv = (np\s)/np and the trans-
lation of Lambek calculus formulas into first-order linear logic. We can then
simply use the translation of Lambek calculus formulas into first-order linear
logic of Moot & Piazza (2001) to obtain a formula in first-order linear logic.
For the formula above, this amounts to replacing the formulas tv(V,W ) as
follows.

‖tv‖V,W = ‖(np\s)/np‖V,W

= ∀Z.‖np‖W,Z ( ‖np\s‖V,Z

= ∀Z.‖np‖W,Z ( ∀X.‖np‖X,V ( ‖s‖X,Z

= ∀Z.[np(W,Z)( ∀X.[np(X,V )( s(X,Z)]]

What is surprising about the resulting formula in first-order linear logic is
that it is logically equivalent to the lexical entry for gapping of Morrill et al.
(2011) when we translate this entry into first-order linear logic as well (we
have seen this translation in Section 4.4).

4.6 Comparing formalisms

One important advantage of translating lexical entries in different formalisms
into first-order linear logic is that it makes it very easy to compare the lexical
entries in different formalisms.

As a simple example, the lambda grammar/ACG lexical entry np ( s
with prosodic term λy.(y+ sleeps) becomes, according to the translation into
first-order linear logic, the formula ∀x.np(x, 1) ( s(x, 2), just like the Lam-
bek calculus (and Displacement calculus) formula np \ s. Even though these
translations follow rather different paths, they end up at the same destina-
tion, and it is this agreement on many of the ‘basic’ lexical entries which
allows the comparison of formalisms using first-order linear logic. The same
is true for other lexical entries, for example, those for generalised quantifiers
(Oehrle 1994, de Groote 2001, Moot & Piazza 2001, Morrill et al. 2011) where
upon translation into first-order linear logic, we end up with the same (or at
least equivalent) formulas.

4.6.1 Relative pronouns

As a more interesting example of this way of comparing formulas, here are five
different first-order linear logic formulas expressing extraction. These formulas
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would be assigned to a relativiser such as “which” occurring at position 3-4.

∀x0.[[∀x1.[np(x1, x1)]( s(4, x0)]( ∀x2.[n(x2, 3)( n(x2, x0)]] (4.13)

∀x0.[∃x1.[np(x1, x1)( s(4, x0)]( ∀x2.[n(x2, 3)( n(x2, x0)]] D (4.14)

∀x0∀x1∀x2.[((np(x1, x1)( s(4, x0))( (n(x2, 3)( n(x2, x0))] ACG (4.15)

∀x0.[∀x1.[np(x1, 4)( s(x1, x0)]( ∀x2.[n(x2, 3)( n(x2, x0)]] L : (n\n)/(np\s)
(4.16)

∀x0.[∀x1.[np(x0, x1)( s(4, x1)]( ∀x2.[n(x2, 3)( n(x2, x0)]] L : (n\n)/(s/np)
(4.17)

The first three formulas, though with slightly different scopes for the quan-
tifiers, intuitively mean that a relative pronoun spanning positions 3-4 is look-
ing to its left for a noun n (a noun spanning positions x2-3 for some x2 of our
choice) and to its right for a sentence s, which itself is missing a noun phrase
anywhere (where this sentence spans positions 4-x0 for some x0 of our choice,
the relation between the position of the np and this sentence is not specified,
though the proof theory will ensure this np will occur ‘inside’ the sentence).
The result will be a noun from position x2, the start of the n argument, to
x0, the end of the s argument.

The first formula is a possibility which I have not seen before. Formula 4.14
is the formula from Moot & Piazza (2001) as well as the translation into first-
order linear logic of the extraction formula for the Displacement calculus (D).
Formula 4.15 is the translation of the lambda grammar lexical entry proposed
by Muskens (2001). Finally, formulas 4.16 and 4.17 are the translations of the
two Lambek calculus formulas for peripheral extraction. These formulas are
related as follows (where a directed path between the two formulas denotes
derivability of the target from the source).

4.13 4.14 4.15

4.16

4.17

So the formulas of the Displacement calculus and the one proposed di-
rectly for first-order linear logic are identical (formula 4.14). This formula is
equivalent to formula 4.15 proposed for λ-grammars/ACGs; although we can-
not always transform a linear logic formula into an equivalent prenex normal
form (Lincoln & Shankar 1994), formula 4.14 does allow such a form which
is formula 4.15. When we look at lambda grammars in isolation, we cannot
even directly ask the question about the relation to Lambek calculus formulas,
though here it is clear that formulas 4.13 to 4.15 all have the Lambek calculus
formulas 4.16 and 4.17 as special cases. The new formula 4.13 is the most gen-
eral formula, but it is unclear whether or not there is any useful (or harmful!)
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4. First-order linear logic

difference in behaviour between this formula and the formulas corresponding
to those use in the Displacement calculus and lambda grammars5

This brings up an important question: since, in (classical) first-order logic,
formula 4.13 is equivalent to formulas 4.14 and 4.15 maybe first-order linear
logic is too fine-grained a tool and the suitable notions of equivalence are better
formulated directly in first-order logic. Is the difference between classical first-
order equivalence and linear first-order equivalence important, and if, so which
is the more suitable notion in the current context?

4.6.2 Adverbs, higher-order formulas and lambda
grammars

The first-order linear logic perspective also clarifies the limitations of abstract
categorial grammars/lambda grammars. For adverbs, for example, we are
looking for a lexical entry which functions at least as well as the Lambek
calculus formula (np\s)/(np\s). However, as shown by Moot (2014b), we can
simply enumerate all possible ACG lexical entries l, compute their translation
into first-order linear logic, compute the translation of (np \ s) / (np \ s)
into first-order linear logic and compare. Keeping only the plausible lexical
entries (that is, those which generate the right semantics and right word order)
leaves us with three possibilities, which are shown as items 4.19 to 4.21 below,
together with the translation of (np\s)/(np\s) as item 4.18 (note the narrow
scope of ∀x1 in this translation). The adverb is assumed to span positions
1-2.

∀x0∀x2.[∀x1.[np(x1, 2)( s(x1, x2)]( (np(x0, 1)( s(x0, x2))] (4.18)

∀x0∀x1∀x2.[(np(x1, x1)( s(2, x2))( (np(x0, 1)( s(x0, x2))] (4.19)

∀x0∀x1∀x2.[(np(1, 2)( s(x1, x2))( (np(x0, x1)( s(x0, x2))] (4.20)

∀x0∀x1∀x2.[(np(x1, 2)( s(x0, x2))( (np(x1, 1)( s(x0, x2))] (4.21)

The translations of ACG lexical entries are always formulas with only
universal quantifiers and in prenex normal form6. It is easy to verify that
all of items 4.19 to 4.21 are strictly more general than the translation of
(np \ s) / (np \ s), shown as item 4.18.

However, where in the case of relative pronouns, a more general formula
turned out to be a benefit, in the case of adverbs, it turns out to be a source
of overgeneration. For example, item 4.19, the adverb lexical entry most
commonly used in the ACG literature, predicts that an adverb selects to its

5An advantage of formula 4.13 is that it is the only one we can extend for so-called para-
sitic gapping (where a single relative pronoun binds multiple extracted noun phrases) since
copying the ∀x1.[np(x1, x1)] subformula allows us to instantiate x1 to different positions
(one for each extracted np), something impossible for formulas 4.14 and 4.15.

6The term Skolem normal form is often used for a prenex normal form with universal
quantifiers, but I don’t use it here since it suggests that existential quantifiers have been
replaced by universally quantified Skolem terms and 1) there are no terms in the translations
of ACG formulas 2) Skolemization is unsound in first-order linear logic (Lincoln & Shankar
1994).
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AB-grammar︷ ︸︸ ︷

Figure 4.11: Lambek grammar

right, a sentence missing a noun phrase anywhere. In other words, the lexical
entry for adverbs is modelled after the lexical entry for relative pronouns and
therefore follows a ‘medial extraction’ analysis, whereas items 4.20 and 4.21
predict a type of quantifying-in behaviour: item 4.20 is modelled after the type
assigned to a generalised quantifier but with an extra np argument; it takes as
its argument a sentences missing a noun phrase at the position of the adverb
(just like a generalised quantifier takes a sentence missing an np at the position
of the quantifier as its argument), making the odd prediction that adverbs
occur at the same place as noun phrases. Formulas 4.19 and 4.20 therefore
predict Sentences (1) and (2), along with many other strange possibilities, are
correct.

(1) John deliberately Mary hit.

(2) Mary the friend of deliberately left.

Other higher-order Lambek calculus formulas have similar problems when we
try to translate them into ACG. For example, the word “and” when used for
the coordination of transitive verbs has 3024 possible translations, with 420
generating the correct surface structure and 148 having, in addition, the cor-
rect semantics as a possible reading. However, these many possibilities all fol-
low the same pattern we have seen above for adverbs: they use a combination
of extraction-like and quantifying-in constructions and therefore overgenerate
(Kubota & Levine 2013, Moot 2014b)7.

4.7 A visual comparison of the different calculi

Figure 4.11 shows the Lambek calculus connectives as links for first-order
linear logic proof nets. Curry’s (1961) criticism of the Lambek calculus con-
nectives, seen from the current perspective, is that they combine subcate-

7This is not to say that ACG cannot treat these phenomena at all, but that solutions
require us to do at least one of the following: 1) abandon type-logical deep structure, 2) use
a lexical duplication strategy. Some partial results have been obtained reducing the worst
cases of overgeneration by using one or both of these options (Moot 2014b, Kanazawa 2015,
Kiselyov & Hoshino 2019) all of which result in an explosion of the grammar size.
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Figure 4.12: First-order linear logic
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2nd-order λ-grammar︷ ︸︸ ︷

Figure 4.13: Lambda grammars

gorization information (functor-argument structure) and string operations.
Although from a modern proof-theoretical point of view (Andreoli 1992) it is
perfectly valid to combine multiple positive and multiple negative rules into
a single rule, separating the two gives us more freedom (that is, it allows us
to express more relations between the string positions and go beyond simple
concatenation — the prefix and postfix operations of the Lambek calculus).

As shown in Figure 4.12, the first-order linear logic solution decomposes
the Lambek connectives into separate subcategorization and string position
components. This decomposition answers Curry’s critique in a very simple
way.

Curry’s own solution is different and causes a loss of symmetry: as Fig-
ure 4.13 makes clear, the positive universal link is missing! This loss of sym-
metry is easy to miss in a unification-based presentation of the logic where,
in addition, the quantifiers occur only as an implicit prefix of the formula.
For a logician/proof theorist, this is worrying since many classical results and
desirable properties of the system (restriction to atomic axioms, cut elimi-
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Lambek grammar︷ ︸︸ ︷

Figure 4.14: Hybrid grammar

nation, interpolation8) depend on this symmetry. However, this also means
that lambda grammars implicitly claim that positive A/B and B\A formu-
las play no useful role in language modelling or at least that these formulas
are replaceable. As we have seen in the previous section, this leaves lambda
grammars without a treatment of adverbs, coordination, gapping and other
phenomena.

Another way to look at this is that lambda grammars require all formulas
to be expressed in prenex normal form (using only the ∀ and ( connectives,
and without function symbols). However, because we are operating under
several restrictions (linear logic without function symbols), not all formulas
have such a prenex normal form. The following are all underivable (assuming
no occurrences of x in B). Refer back to Figure 4.2 to see why the first
statement is underivable.

(∀x.A)( B 0 ∃x(A( B)

∃x(A( B) 0 (∀x.A)( B

B( ∃x.A 0 ∃x.(B( A)

∃x.(B( A) 0 B( ∃x.A

The hybrid solution to the problem of the missing rules is shown in Fig-
ure 4.14: we simply reintroduce the positive Lambek connectives directly.
There are now two ways of coding the negative Lambek connectives. The
resulting system is also greater than the sum of its parts, since gapping,

8Interpolation, proved first for the Lambek calculus by Roorda (1991) is a key com-
ponent of the context-freeness proof for the Lambek calculus of Pentus (1997). However,
it seems this proof strategy does not have a simple extension to any of the systems under
consideration here, since, as noted by Buszkowski (1997), a system which is not completely
non-commutative need not have interpolants which are smaller. Moreover, a simple counting
argument (Moot & Retoré 2019, Section 4) shows that, since a sentence with n quantifiers
has up to n! readings, we cannot enumerate these using MCFGs and related formalisms (as
would be needed to establish the class of formal languages).
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.Lambek grammar
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Figure 4.15: D grammars, binary

which has a satisfactory neither in Lambek grammars nor in lambda gram-
mars, can be elegantly treated in hybrid type-logical grammar (Kubota &
Levine 2012, Kubota & Levine 2013).

Symmetry is still lost9, but empirically the system seems comparable to
the Displacement calculus (Morrill et al. 2011): the Displacement calculus has
the full symmetry absent from hybrid type-logical grammars. In spite of this
— as we have seen at the end of Section 4.5 and in Section 4.6 — in many
cases, the analyses proposed for the two formalisms basically agree, as is made
especially clear by their translation into first-order linear logic.

The differences between the two systems seems to be that hybrid type-
logical grammars can, like lambda grammars, generate non-well-nested string
languages and that Displacement grammars (seen from the point of view of
hybrid type-logical grammars) allow the Lambek connectives to outscope the
discontinuous connectives. Further analysis is necessary to decide which of
these two systems has better empirical coverage.

D grammars (Morrill et al. 2011) have a different perspective, which is
shown in Figure 4.15. Functor argument structure and string positions are
still joined, but a greater number of combinations are possible (from 0 to
n quantifiers, for a small value of n determined by the grammar). Lambek
grammars are now the restriction to a single quantifier for each binary con-
nective.

D grammars enriched with bridge, left projection and right projection,
shown in Figure 4.16, permit combinations of string position/subcategorization
which are not of the same polarity. These uses are rather restricted compared
to the visually similar quantifier link of first-order linear logic: essentially,
they enable us to require that a pair of positions spans the empty string.

9Neither full logical symmetry nor having the Lambek calculus as a subsystem is of
course necessary to have a formal system with sufficient empirical coverage, as shown, for
example by CCG (Steedman 2000). However it calls for further investigation as to what
exactly is absent from the system and if this absence is important from a descriptive point
of view.
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Figure 4.16: D grammars

4.8 Conclusions

Summing up, first-order linear logic decomposes the connectives of different
grammatical frameworks — the Lambek calculus, lambda grammars, hybrid
type-logical grammars and the Displacement calculus — in a natural way into
its four types of links. This visual comparison both highlights the differences
between these calculi and opens the way for a more detailed comparison of
the descriptive limitations of one calculus compared to another.

The translations to first-order linear logic slightly increase the formula size
in terms of the total number of connectives in the lexical entries. However, the
basic operations are simple and well-understood and the first-order variables
actually function as powerful constraints during proof search. Thanks to the
embedding results (Moot 2014a, Moot 2014b), we can import the large range
of linguistic phenomena treated by Displacement grammars and hybrid type-
logical grammars directly into first-order linear logic.

From the point of view of first-order linear logic, the connectives of the
other calculi are synthetic connectives: combined connectives of the same po-
larity. We can mix and match these synthetic connectives as we see fit. We can
also exploit the symmetry of first-order linear logic and use lambda grammar
lexical entries as arguments10, restoring the symmetry of lambda grammars
(and of hybrid type-logical grammars). In addition, we can add the product
⊗ and quantifier ∃ to our calculus essentially for free. Moreover, as discussed
by Moot (2014a) we can use the quantifiers of first-order linear logic to give
an account of agreement and island constraints as well. So we can improve
upon Displacement grammar analyses by adding agreement and island con-
straints and improve upon hybrid type-logical grammar analyses by adding
symmetry, across-the-board extraction, agreement and island constraints, all
with the same logical primitives.

10From the perspective of first-order linear logic, it seems that the so-called phenomi-
nators of Pollard & Worth (2015) and Needle (2021) provide a way of doing this, but this
needs to be further investigated.
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4. First-order linear logic

Besides the theoretical benefits of providing a common logical core for a
number of prominent formalisms in type-logical grammars, we can also use
first-order linear logic as a parser/theorem prover for all these formalisms.
The proof net theorem prover of Moot (2015c) allows the grammar writer to
specify his grammar as a lambda grammar, Lambek grammar, displacement
grammar or hybrid grammar, the theorem prover then translates the grammar
into first-order linear logic, and when a proof is found the proof net in first-
order linear logic can be translated back into the source logic (as a natural
deduction or sequent calculus proof). If the grammar writer desires, the un-
derlying first-order linear logic formulas and proofs can be completely hidden.
It is therefore possible to view first-order linear logic as a sort of underlying
‘machine language’ for these other logics. In this view, the lambda-terms of
hybrid grammars and the logical connectives of Lambek and Displacement
grammars are convenient high-level descriptions, which hide the technical as-
pects of position variables and quantifiers.

First-order (multiplicative, intuitionistic) linear logic and its correspond-
ing proof nets are a simple and standard fragment of linear logic. However,
translating type-logical grammars into first-order linear logic requires us to
show that the structure and operations of such type-logical grammars can be
uniquely recovered from a finite amount of constants and variables. For the
Displacement calculus, this is done by showing that we inductively maintain a
linear order on the string segments represented by the free variables/constants.
For lambda grammars, this is done using principal types, where the variables
represent lambda terms module βη equivalence. However, similarly efficient
encodings may not be available for other type-logical grammars, such as mul-
timodal type-logical grammars, the logical of scope NLλ, and the Lambek-
Grishin calculus LG. In the next chapter, we will introduce a graph rewriting
perspective on proof nets, inspired by the interaction nets of Lafont (1995)
and the multimodal proof nets of Moot & Puite (2002) and show they can be
extended to give an account of all modern type-logical grammars.

102



5 Graph rewriting

5.1 Multimodal proof nets

As we have seen in Section 3.2, proof nets for multiplicative linear logic are
built from the one-sided sequent formulation of linear logic, which exploits
the de Morgan symmetries to move all formulas to the right hand side of the
turnstile and to move all negations to the atoms. In this setup, intuitionism
corresponds to a restriction on the forms of allowed formulas and sequents,
where these restrictions are formulated on negative and positive subformulas.
As a consequence of this one-sided setup, proof structures have only conclu-
sions and no hypotheses, and all links have the main formula of the link as
their conclusion.

The multimodal proof nets of Moot & Puite (2002) are based on the
standard two-sided sequent formulation of multimodal type-logical grammars.
These proof nets have both hypotheses and conclusions. In this setup, each
connective has a link with the main formula as its conclusion (corresponding
to the positive polarity version of a link in the multiplicative intuitionistic
system) as well as an up-down symmetric link with the main formula as its
premiss (corresponding to the negative polarity version of a link for multi-
plicative intuitionistic proof nets).

5.1.1 Two-sided Links

Multiplicative proof nets are hypergraphs where the vertices are formula oc-
currences and the hyperedges are links connecting these formulas. The general
form of the links is shown below.
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5. Graph rewriting

Tensor link (general form)

B1 . . . Bm

A1 . . . An

i

Par link (general form)

B1 . . . Bm

A1 . . . An

i

There are two types of links: tensor links, with an open center (shown
above on the left), and par links, with a filled center (shown above on the
right)1. The formulas written above the central node of a link are its premisses,
whereas the formulas written below it are its conclusions. Left-to-right order
of the premisses as well as the conclusions is important. A par link has an
arrow pointing either to one of its premisses or to one of its conclusions.

Logical links have the following general principles:

• each connective has both a tensor link and a par link, which are the
up-down symmetric images of each other,

• one of the formulas is the main formula of the link, the others are its
active formulas (the direct subformulas of the main formula),

• the par link has an arrow pointing to its main formula.

A link in a multimodal proof net is defined as follows.

Definition 5.1 A link is a tuple 〈Type,Label,Premisses,Conclusions,Main〉,
where Type is one of tensor and par (displayed as an open and filled cen-
tral circle respectively), Label is a member i of a set of labels or modes I,
Premisses is a list of nodes representing the premisses of the link (these are
displayed from left to right above the central circle), Conclusions is a list of
nodes representing the conclusions of the link (these are displayed from left
to right below the central circle), and Main designates one of the premisses,
one of the conclusions or no vertex as the main vertex of the link (these are
displayed by an outgoing arrow from the central circle).

Definition 5.1 is very general and can be instantiated in various ways.
We start with a very simple example. In general, the tensor links define the
structure of the sequents; intuitively, tensor links are structure-building oper-
ations whereas par links are structure-erasing operations. Suppose the tensor
link has two premisses and a single conclusion. This means the structures
under consideration are labeled binary trees, with label-alphabet I. Given
this choice of structure, there are three choices for the main formula: the left
premiss, the right premiss and the conclusion. This gives us the links shown
in Table 5.1.

1I have followed Moot & Puite (2002) in separating the links between par and tensor.
For the binary multimodal connectives, par and tensor links correspond to underlying par
and tensor links in linear logic. However, this is no longer true for many of the extended
versions of these links that we will see later. In hindsight, it might have been better to
follow the terminology of Andreoli (1992) and call par links ‘asynchronous’ or ‘reversible’
links, and call tensor links ‘synchronous’ or ‘not reversible’ links.
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Table 5.1: Tensor links for multimodal proof nets
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Table 5.2: Links for multimodal proof nets

According to the general principle, each tensor link induces an up-down
symmetric par link, with an arrow pointing to the main formula. Applying this
principle to the tensor links of Table 5.1 produces Table 5.2. Each connective
has two links, one where the main formula is a premiss (the top row of the
table) and one where the main formula is a conclusion (the bottom row of the
table).

The top row of Table 5.2 lists the links corresponding to the elimination
rules of natural deduction (and the left rules in sequent calculs), the bot-
tom row those corresponding to the introduction rules (and the right rules in
sequent calculus).

5.1.2 Proof structures

A proof structure is a special type of (hyper)graph, where the vertices are
formula occurrences and the (hyper)edges are as defined in Table 5.2.

Definition 5.2 A proof structure is a set of formula occurrences and a set
of links such that:

1. each link is an instance of one of the links of Table 5.2 (for some A, B,
C, i),

105



5. Graph rewriting

a

a/ab b
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b

b/ac c

a

a/ac
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Figure 5.1: Lexical unfolding of a/ab, b/ac ` a/ac

2. each formula is at most once the premiss of a link,

3. each formula is at most once the conclusion of a link.

A formula which is not the premiss of any link is a conclusion of the proof
structure. A formula which is not the conclusion of any link is a hypothesis
of the proof structure.

Compared to the standard one-sided definition of proof nets, our proof
structures are modules (see Definition 3.3 in Section 3.2.1). In other words,
the distinction between proof structures and modules disappears in the two-
sided case. Most other definitions are unchanged for the two-sided case. For
example, we still call a maximal, connected set of tensor links a component
(and, as usual, we can obtain the components of a proof structure by taking
the connected components after removing all par links from the structure).

We say a proof structure with hypotheses Γ and conclusions ∆ is a proof
structure of Γ ` ∆ (we are overloading of the ‘`’ symbol here, though this
use should always be clear from the context; note that ∆ can contain multiple
formulas).

After the first step of lexical lookup we have a sequent Γ ` C, and we can
enumerate its proof structures as follows: unfold the formulas in Γ, C, ensuring
that the formulas in Γ are hypotheses and the formula C is a conclusion of
the resulting structure, until we reach the atomic subformulas, then identify
atomic subformulas. Taken together, these are just the first three steps of
the procedure for standard one sided proof nets (as discussed, for example,
in Section 4.3), only with slightly different structures. We turn to the last
step, checking correctness, below. By the conditions on proof structures, this
identification step can only identify hypotheses with conclusions and must
leave all formulas of Γ, including atomic formulas, as hypotheses and C as a
conclusion.

Figure 5.1 shows the lexical unfolding of the sequent a/ab, b/ac ` a/ac.
It is already a proof structure, although it is a proof structure of sequent
a, a/ab, b, b/ac, c ` a, a/ac, b, c (as noted above, according to the standard
definitions of one-sided proof nets, a ‘partial proof structure’ like the one
shown in the figure would be called a module).

To turn this proof structure into a proof structure of a/ab, b/ac ` a/ac,
we identify the atomic formulas. In this case, there is only a single way to do
this, since a, b and c all occur once as a hypothesis and once as a conclusion,
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Figure 5.2: The proof structure of Figure 5.1 after identification of the a and
b atoms (left) and after identification of all atoms

though in general there may be many possible matchings. Figure 5.2 shows,
on the left, the proof structure after identifying the a and b formulas. Since
left and right (linear order), up and down (premiss, conclusion) have meaning
in the graph, connecting the c formulas is less obvious: c is a conclusion of
the /I link and must therefore be below it, but a premiss of the /E link and
must therefore be above it. This is hard to achieve in the figure shown on
the left. A possible solution would be to draw the figure on a cylinder, where
‘going up’ from the topmost c we arrive at the bottom one. However, for ease
of type-setting and reading the figure, I have chosen the representation shown
in Figure 5.2 on the right. The curved line goes up from the c premiss of the
/E link and arrives from below at the /I link, as desired. One way so see this
strange curved connection is as a graphical representation of the coindexation
of a premiss with a rule in the natural deduction rule for the implication.

Figure 5.2 therefore shows, on the right, a proof structure for the sequent
a/ab, b/ac ` a/ac. However, is it also a proof net, that is, does it corre-
spond to a proof? In a multimodal logic, the answer depends on the available
structural rules. For example, if no structural rules are applicable to mode a
then a/ab, b/ac ` a/ac is underivable, but if mode a is associative, then it is
derivable.

5.1.3 Proof nets and graph contractions

We decide whether a proof structure is a proof net based only on properties of
the graph. As a first step, we erase all formula information from the internal
nodes of the graph; for administrative reasons, we still need to be able to
identify which of the hypotheses and conclusion of the structure correspond to
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Figure 5.3: The proof structure of Figure 5.2 (left) and its abstract proof
structure (right)

which formula occurrence2. All relevant information for correctness is present
in this graph, which we call an abstract proof structure.

We talked about how the curved line in proof structures (and abstract
proof structure) corresponds to the coindexation of discharged hypotheses
with rule names for the implication introduction rules. However, the intro-
duction rules for multimodal type-logical grammars actually do more than
just discharge a hypothesis, they also check whether the discharged hypothe-
sis is the immediate left (for \I) or right (for /I) daughter of the root node,
that is, that the withdrawn hypothesis A occurs as A◦i Γ (for \I and mode i)
or Γ ◦i A (for /I and mode i). The par links in the (abstract) proof structure
represent a sort of ‘promise’ that we will produce the required structure. We
check whether it is satisfied by means of contractions on the abstract proof
structure.

The multimodal contractions are shown in Table 5.3. All portrayed config-
urations contract to a single vertex: we erase the two internal vertices and the
paired links and we identify the two external vertices, keeping all connections
of the external vertices to the rest of the abstract proof structure as they were:

2We make a slight simplification here. A single vertex abstract proof structure can have
both a hypothesis and a conclusion without these two formulas necessarily being identical,
e.g. for sequents like (a/b)•b ` a. Such a sequent would correspond to the following abstract
proof structure.

(a/b)•b
·
a

So, formally, both the hypotheses and the conclusions of an abstract proof structure are
assigned a formula and when a node is both a hypothesis and a conclusion it can be assigned
two different formulas. In order not to make the notation of abstract proof structure more
complex, we will stay with the simpler notation. Moot & Puite (2002) present the full
details.
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Table 5.3: Contractions — multimodal binary connectives

the vertex which is the result of the contraction will be a conclusion of the
same link as the top external vertex (if it is not the conclusion of any link, it
will be a hypothesis of the abstract proof structure) and it will be a premiss
of the same link as the bottom external vertex (if it is not the premiss of any
link, it will be a conclusion of the abstract proof structure).

The contraction for /I checks if the withdrawn hypothesis is the right
daughter of a tensor link with the same mode information i, and symmetrically
for the \I contraction. The •E contraction contracts two hypotheses occurring
as sister nodes.

All contractions are instantiations of the same pattern: a tensor link and a
par link are connected, respecting left-right and up-down, to the two vertices
of the par link without the arrow.

To get a better feel for the contractions, we will start with its simplest
instances. When we do pattern matching on the contraction for /I, we see
that it corresponds to the following patterns, depending on our choice for the
tensor link (the par link is always /I).

C/iB ` C/iB
A ` (A •i B)/iB

A ` C/i(A\iC)

Figure 5.4 shows the three proof nets corresponding to the patterns above
(these hold for all i ∈ I).

A proof structure is a proof net iff it contracts to a tree containing only
tensor links using the contractions of Table 5.3 and any structural rewrites,
discussed below — Moot & Puite (2002) present full proofs. In other words,
we need to contract all par links in the proof structure according to their
contraction, each contraction ensuring the correct application of the rule after
which it is named. The abstract proof structure on the right of Figure 5.3
does not contract, since there is no substructure corresponding to the /I
contraction: for a valid contraction, a par link is connected to both ‘tentacles’

109



5. Graph rewriting

C

C/iB B

i

C/iB

i

A •i B

A B

i

(A •i B)/iB

i

C

A A\iC
i

C/i(A\iC)

i

Figure 5.4: The three simplest proof nets requiring the /I contraction.

v

x �

a

y z

a

v

� z

a

x y

a
→

Ass1

←
Ass2

Figure 5.5: Structural rewrites for associativity of mode a.

of a single tensor link, and in the figure the two tentacles without arrow are
connected to different tensor links. This is correct, since a/ab, b/ac ` a/ac is
underivable in a logic without structural rules for a.

However, we have seen that this statement becomes derivable once we
add associativity of a and it is easily verified to be a theorem of the Lambek
calculus. How can we add a modally controlled version of associativity to
the proof net calculus? We can add such a rule by adding a rewrite from a
tensor tree to another tensor tree with the same set of leaves. The rewrite for
associativity is shown in Figure 5.5. To apply a structural rewrite, we replace
the tree on the left hand side of the arrow by the one on the right hand side,
reattaching the leaves and the root to the rest of the abstract proof structure.

Just like the structural rules, a structural rewrite always has the same
leaves on both sides of the arrow — neither copying nor deletion is allowed3,
though we can reorder the leaves in any way (the associativity rule doesn’t
reorder the leaves).

Figure 5.6 shows how the contractions and the structural rewrites work
together to derive a/ab ◦a b/ac ` a/ac.

We start with a structural rewrite, which rebrackets the pair of tensor
links. The two hypotheses are now the premisses of the same link, and this

3From the point of view of linear logic, we stay within the purely multiplicative fragment,
which is simplest proof-theoretically.
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Figure 5.6: Structural rewrite and contraction for the abstract proof structure
of Figure 5.3, showing this is a proof net for a/ab ◦a b/ac ` a/ac

also produces a contractible structure for the /I link. Hence, we have shown
the proof structure to be a proof net.

Although the structural rules give the grammar writer a great deal of
flexibility, such flexibility complicates proof search. As discussed at the end
of Section 4.3 on page 78, theorem proving using proof nets is a four step
process, which in the current situation looks as follows.

1. Lexical lookup a choice of a formula for each word in the input sequence
(and a choice of the goal formula),

2. Unfolding decomposing the complex formulas using the links (this step
is deterministic and can be done in linear time)

3. Identification of the atoms connecting positive (conclusion) and negative
(hypothesis) atomic formulas to produce a proof structure of the input
sequent,

4. Check correctness by means of graph rewriting.

In the current case, both graph rewriting and the identification of atoms
are complicated4. The reason the graph rewriting component is more com-
plex in the multimodal case is that although the rewrites cannot increase the
structure5, they do not necessarily reduce the size of the structure (unlike
the first-order contractions of Section 4.3). Moreover, we need to keep track

4Lexical ambiguity is a major problem for automatically extracted wide-coverage gram-
mars as well. We will return to this problem in Chapter 6.

5This condition is imposed by Moot (2002) to guarantee decidability even when unary
branches are added.
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Table 5.4: Links for the unary connectives

of already visited structures (for example, to avoid repeatedly applying the
associativity rules back and forth) and confluence of the rewrite operations is
not guaranteed, so some sort of search is required, at least in the most general
case (e.g. breadth-first search while keeping track of visited structures6).

However, the graph rewriting calculus can also serve as some sort of step-
ping stone towards a confluent calculus. This is easiest for rules like asso-
ciativity, which simply involve n premiss tensor links (that is, the premisses
of the tensor link directly represent the list structure of the antecedent) for
the Lambek calculus (Moot & Puite 2002), but we can use similar strategies
for other structural rules (Moot & Retoré 2012, Section 7.1.3). We will see
several instances of this later in this chapter.

5.2 Generalized multimodal proof nets

The links for multimodal proof nets are sufficiently general to allow quite a
number of connectives in addition to the binary ones discussed before. One
of the simplest additions is to allow unary branches. This means our se-
quents are structured as labelled trees where all nodes have either one or
two daughters (such trees are sometimes called 1-2-trees), and it gives a pair
of new connectives, generally written ♦ and �, operating on the new unary
branches.

Table 5.4 shows the new links for the unary connectives. The contractions
for the unary connectives look as shown in Table 5.5.

We can see the links and contraction for ‘♦’ as a version of the links and
contraction for ‘•’ with one of the branches removed. Similarly, the links and
contractions for ‘�’ correspond to those of ‘/’ (or ‘\’).

6This strategy is used by Moot et al. (2015) because it finds shortest rewrite sequences,
that is, without any unnecessary structural rule applications.
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Table 5.5: Contractions for the unary connectives

The correctness condition for proof nets with the unary modalities added
remains the same: a proof structure is a proof net whenever its abstract proof
structure contracts to a tree using the contractions and the structural tree
rewrites corresponding to the structural rules of the grammar.

To make this more concrete, we will now translate the analysis of extrac-
tion in multimodal type-logical grammars from Section 2.1.1 to a proof net
analysis. This is quite straightforward, but I believe it is important at this
point to have a non-trivial example of how to use multimodal proof nets with
the new unary branches as a tool for theorem proving.

We want to analyse the noun shown as (1) below.

(1) book which John read yesterday

These are the now-classic cases of medial extraction motivating the develop-
ment of multimodal grammars and unary connectives (as well as many other
modern type-logical grammars).

Lex(book) = np

Lex(which) = (n\n)/(s/♦�np)

Lex(John) = np

Lex(read) = (np\s)/np

Lex(yesterday) = s\s

The lexicon above is quite standard, the only formula which merits some
discussion is the one assigned to “which”: the formula (n\n)/(s/♦�np) indi-
cates it is looking for a sentence missing a noun phrase anywhere7. The two
structural rules required for this behaviour are repeated below.

Γ[∆1 ◦ (∆2 ◦ 〈∆3〉)] ` C
Γ[(∆1 ◦∆2) ◦ 〈∆3〉] ` C

MA
Γ[(∆1 ◦ 〈∆3〉) ◦∆2] ` C
Γ[(∆1 ◦∆2) ◦ 〈∆3〉] ` C

MC

7More precisely, it can be missing from any right branch of the structure, which Moort-
gat (1999) and Oehrle (2011) argue to be the correct behaviour for English.
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Figure 5.7: Tree rewrites corresponding to the structural rules for mixed as-
sociativity and mixed commutativity

From the graph rewriting perspective, the structural rule correspond to
tree rewrites on the abstract proof structures. Figure 5.7 shows the rewrites
corresponding to the mixed associativity and mixed commutativity structural
rules. The tree rewrites are just a graphical way to read the operations of the
structural rules, they allow us to replace the structure used as the premiss of
the structural rules by the one used as its conclusions (read x = ∆1, y = ∆2

and z = ∆3 to make this even more clear). Both rewrite rules provide a way
to move a unary branch closer to the root of the tree.

Returning to our proof net analysis, Figure 5.8 shows the unfolding of the
lexical formulas. We have numbered the atomic formulas to allow for easy
reference to them, these numbers are not formally part of the proof structure.
The square tables above the figure give a summary of the combinatorics of
the axiom matching stage of proof search. The rows denote the atomic con-
clusions, whereas the columns denote the atomic hypotheses of the structure.
Since “book” and “John” are hypotheses of the proof (that is, their formulas
should appear in the antecedent of the end-sequent of the proof) and the for-
mula n4 labelled Goal is a conclusion of the proof (that is, it should be the
succedent of the end-sequent of the proof) these formulas are only available
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Figure 5.8: Lexical lookup and possible atom matchings for the multimodal
proof net analysis of “book which John read yesterday”

as conclusions (in the case of “book” and “John”) and as a hypothesis (in the
case of the goal formula n4).

We have two possibilities for linking the n formulas, two for the np formulas
and two for the s formulas. However, as with first-order linear logic proof nets,
we can use a number of strategies for eliminating possibilities.

One powerful strategy is exploiting the fact that, whatever structural rules
we use, our final proof should translate through a forgetful mapping to a mul-
tiplicative linear logic proof. This means we can use the acyclicity and con-
nectedness criterion to eliminate invalid connections. For example, connecting
the n1 of “book” to the n4 of the goal formula produces a disconnected struc-
ture: it would create an isolated vertex which can never be connected to the
rest of the structure. Similarly, connecting n2 to n3 produces a cycle. This
means that for the noun formulas, only the connections n1 − n2 and n3 − n4

can lead to a proof.

The s formulas are similarly restricted. Connecting s3 to s4 produces a
cycle. This leaves s2 as only alternative for s3, and s1 as only alternative for
s4. For the np formulas, neither possibility violates the correctness conditions
of multiplicative linear logic. However, the connection of the np2 of “John” to
the object noun phrase np4 of “read” would not allow us to produce an analysis
with the correct word order: it would try (and fail) to find a proof for “book
which read John”. We can use some reasoning about the available structural
rewrites to argue why this atom connection can not produce a proof (for
example, by showing that the structural rules only allow us to move a structure
with a unary bracket from one right branch to another, and the connections
np2 − np4, np1 − np3 would put the unary branch at a left branch, resulting
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in failure of contraction). However, this requires some complex reasoning
about properties of grammar-dependent sets of structural rules. In practical
applications, a number of solutions have been used. The theorem prover
of Moot et al. (2015) allows the grammar writer to explicitly declare which
modes are ‘word order preserving’ and for which the theorem prover can
therefore reject partial proof structures not respecting the desired word order.
The theorem prover of Moot (2015b) allows the grammar writer to specify
approximations in first-order linear logic for the structural rules. Using such
specifications then allows the theorem prover the rule out any structure which
is invalid according to these first-order linear logic approximations. Moot
(2008) gives a detailed presentation of the different ways to reduce the number
of axioms links in proof net proof search. Of course, the grammar writer needs
to be extremely careful when making declarations of this type: an incorrect
declaration of (say) a first-order approximation could cause the theorem prover
to fail to find proofs. Efficiency improvements of this type should never filter
out proofs, only proof attempts which can never be extended to proofs.

Figure 5.9 shows (on the left hand side) the result of performing all axiom
links in the previous step. The reader is invited to verify the other axiom links
can never reduce to a tree given the rewrite rules and contractions available8.
On the right of the figure we have shown the corresponding abstract proof
structure. As usual, the abstract proof structure is obtained by removing all
formula information at the internal nodes. We have kept the words instead of
their corresponding formulas as hypotheses of the abstract proof structure.

Looking at the abstract proof structure on the right hand side of Fig-
ure 5.9, we see that in order to show the structure is a proof net — that is,
to convert it to a tree without par links — we need to do a minimum of two
par contractions: one ♦E contraction and one /E contraction.

We can do the ♦E contraction immediately, since the lexical entry for
“which” already contains the required redex. However, performing this con-
traction removes our unary branch, thereby blocking all structural rule appli-
cations: both the MA and MC structural rules require a unary branch. In
this analysis, the ♦E contraction plays a role similar to the dereliction rule in
linear logic: it takes a formula licensed to use additional structural rules and
removes this license when we no longer need it. We therefore delay the ♦E
contraction until we have used all necessary structural rules.

Looking at the structural rules, only the mixed associativity rule MA can
apply, and it produces the structure shown on the left of Figure 5.10. We have
moved the unary branch up, from depth three in its component to depth two.
We can then apply the mixed commutativity rule MC to move it further up
to depth one, as shown on the right of Figure 5.10. We have moved the unary

8Changing the structural rules (or the lexical entry for “which”) can make “book which
read John” derivable (Oehrle 2011). Although this sentence is odd for the given words,
allowing it provides a way to treat cases of subject extraction such as “book which []np was
on the bestseller list for 14 months”. Whatever the structural rules used, there can only be
two readings for this sequent since, according to our previous discussion, no other readings
are valid in multiplicative linear logic.
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Figure 5.9: Proof structure and abstract proof structure for the lexical lookup
of Figure 5.8

branch up as far as the structural rules allow us to go. The only rule which
can apply now is the ♦E contraction.

Figure 5.11 shows, on the left, the result of applying the contraction. The
key reason for waiting so long applying the ♦E contraction was to provide a
structure which allows us to perform the /I contraction immediately after-
wards. The result of this contraction is shown on the right of Figure 5.11.
The resulting tensor tree represents the following sequent.

book ◦ (which ◦ ((John ◦ read) ◦ yesterday)) ` n

What we have shown with this example is how a multimodal grammar can be
transparently translated into a proof net analysis for proof search. The for-
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Figure 5.10: We rewrite the abstract proof structure from Figure 5.9 first with
the MA conversion, then with the MC conversion

mula unfolding rules and corresponding contractions are fully general, whereas
structural rules translate to tree rewrites. This provides a simple but effec-
tive proof search method, which, moreover, computes the structure of the
words/formulas required for the derivation.

Compared the first-order linear logic, the graph rewrite operations required
for proof search are much more flexible, but this flexibility has a price: because
of their inherent flexibility, our rewrite operations can be complicated, and
deciding whether or not a proof structure is a proof net becomes more of
a search problem (as in symbolic artificial intelligence, with the associated
problems of keeping track of nodes to be visited and nodes already explored)
than a normalisation problem (as the contraction criterion for multiplicative
linear logic, which we can apply eagerly and efficiently).
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Figure 5.11: We complete the proof by first applying the ♦E contraction, then
the /I contraction to the abstract proof structure of Figure 5.10

5.2.1 Discussion

Before going further, we are going to take a step back and look at the general
properties of the proof net calculus which make it work, since these properties
will allow us to extend the calculus to other logics. While the proof structures
represent the logical backbone of a derivation, the abstract proof structures
represent the structured sequents in our logical calculus. More specifically:

• the (acyclic) components of an abstract proof structure (that is, the ten-
sor trees we obtain when removing all par links) represent structured
sequents; we can uniquely recover the necessary information about hy-
pothesis and conclusion formulas from the corresponding proof struc-
ture,

• the structural rewrites correspond to the application a structural rule to
the sequent; this is just the standard way to translate between bracketed
representations and trees,

• the par contractions verify we have the correct structure for the appli-
cation of the logical rule. A par contraction can only apply when the
active tentacles of the rule are attached to the same tensor link (and
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Figure 5.12: Components for the abstract proof structure on the right of
Figure 5.9 (left) and the one of the left of Figure 5.11 (right).

therefore to the same component as well). The contraction removes a
par/tensor combination and reconnects the rest of the structure (refer
back to Figure 5.11 for an example); a par contraction removes a ten-
sor link in addition to the par link and connects the two components
attached to the par link (the one connected to its active formulas and
the one connected to its main formula).

Figure 5.12 illustrates (on the left of the figure) how removing the par
links from an abstract proof structure produces a set of tensor trees9. The

9If any component contains a cycle, then the structure is not a proof net.
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three tensor trees represent the following three proofs.

♦�np ` ♦�np (5.1)

John ` np

read ` (np\s)/np

�np ` �np

〈�np〉 ` np
�E

read ◦ 〈�np〉 ` np\s
/E

(John ◦ (read ◦ 〈�np〉) ` s
\E

yesterday ` s\s
(John ◦ (read ◦ 〈�np〉)) ◦ yesterday ` s

\E
(5.2)

book ` n

which ` (n\n)/(s/♦�np) s/♦�np ` s/♦�np

which ◦ s/♦�np ` n\n
/E

book ◦ (which ◦ s/♦�np) ` n
\E

(5.3)

To ensure sequentialisation and cut elimination, we need to ensure the com-
ponents of the initial proof structure correspond to proofs, that structural
rewrites extend the proof of the corresponding component (e.g. the structural
rewrites in the middle component correspond to structural rules extending
proof 5.2) and the par contractions correspond to application of the corre-
sponding rule followed by combining the two proofs. In our example, once we
have applied the MA and MC structural rules to proof 5.2, we can combine
this proof with the axiom 5.1 using the ♦E rule corresponding to the ♦E
contraction as follows.

♦�np ` ♦�np

....
((John ◦ read) ◦ yesterday) ◦ 〈�np〉 ` s

((John ◦ read) ◦ yesterday) ◦ ♦�np ` s
♦E

(5.4)

Figure 5.12 shows the components at this stage of rewriting the abstract proof
structure (corresponding to the abstract proof structure on the left of Fig-
ure 5.11), with the top component corresponding to proof 5.4 and the bottom
component to proof 5.3. Since the ♦�np hypothesis of the top component is
the right daughter of the root node, we can apply the /E contraction and its
corresponding logical rule, combining the two proofs by substituting the proof
of (John ◦ read) ◦ yesterday ` s/♦�np for the axiom s/♦�np axiom in 5.1 as
follows.

book ` n

which ` (n\n)/(s/♦�np)

....
((John ◦ read) ◦ yesterday) ◦ ♦�np ` s

(John ◦ read) ◦ yesterday ` s/♦�np
/I

which ◦ ((John ◦ read) ◦ yesterday) ` n\n
/E

book ◦ (which ◦ ((John ◦ read) ◦ yesterday)) ` n
\E

(5.5)

With all this in mind, the correctness, sequentialisation and cut elimi-
nation proofs become very simple (Moot & Puite 2002) but it also gives an
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[�I]

C

C �B B

[�E]

C �B B

C

[;I]

C

A; CA

[;E]

A; CA

C

[�I]

A B

A�B

[�E]

A�B

BA

Table 5.6: Links for the Grishin connectives

indication of the properties we need to preserve when adapting the proof net
calculus to different type-logical grammars.

There is another general point worth mentioning here: when we show that
we can decide in polynomial time whether or not an abstract proof structure
contracts to a tree, we thereby show the logic is in NP. This provides a simple
tool for complexity analysis of type-logical grammars.

5.2.2 Up-down symmetry and Lambek-Grishin

One of the main interests of the general setup of multimodal proof nets is
that it is easy to change the links and thereby the allowed structures. One
possibility is to allow binary tensor nodes which are up-down symmetric with
the binary multimodal nodes. The resulting calculus, which generally uses
only a single mode, structures sequents as a type of free tree, where hyperedges
are still oriented but the root in no longer necessarily unique. This leads to
the Lambek-Grishin calculus, an extension of the Lambek calculus introduced
by Grishin (1983).

Proof nets for the Lambek-Grishin calculus are obtained from two-sided
proof nets by simply taking the up-down symmetric version of each link (or,
alternatively, by replacing all tensor links with par links and vice versa). This
produces the links shown in Table 5.6. We can see, for example, that �E
is the up-down symmetric version of /I from Table 5.1, and similarly for the
other rules. Whereas for standard multimodal links, up-down symmetry turns
a tensor link into a par link, in the Lambek-Grishin calculus, each par link and
each tensor link has an up-down symmetric version of the same type, using
a connective of the opposite family (Lambek /, •, \ becoming Grishin �, �,
;, and vice versa), or viewing things differently, each link has another one of
the same shape switching both connective family (Lambek/Grishin) and link
type (par/tensor).

Since there are now tensor links with two conclusions, the structure of the
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Table 5.7: Grishin interaction principles

antecedent is no longer a rooted tree. However, antecedents are still acyclic,
connected graphs of the two types of tensor link (Lambek, branching upwards,
and Grishin, branching downwards).

Contractions for the Grishin connectives are simply the up-down symmet-
ric versions of the contractions for the multimodal Lambek calculus, although
with only a single mode. The Grishin interaction principles, repeated be-
low from Equations 2.7 and 2.8, correspond to the structural rules shown in
Table 5.710.

(A;B) • C → A; (B • C) A • (B � C)→ (A •B)� C (5.6)

B • (A; C)→ A; (B • C) (A� C) •B → (A •B)� C (5.7)

As an example, for their analysis of quantifier scope in the Lambek-Grishin
calculus, Bernardi & Moortgat (2010) propose the formula (s � s) ; np. We
can show that we can derive the standard formula for subject quantifiers
s/(np\s) in the (non-associative) Lambek calculus from this formula. Fig-
ure 5.13 show the proof structure and corresponding abstract proof structure
for this example.

We cannot contract either of the par links in the initial abstract proof
structure shown on the right of Figure 5.13. However, we are in the correct
configuration to apply the Grishin interaction principles from Table 5.7. While

10The correspondence between 5.6 and G1, G3 and between 5.7 and G2, G4 from Ta-
ble 5.7, although not quite as immediate as for standard multimodal structural rules, is
relatively easy to show using a combination of the relevant rewrite and two contractions.
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Figure 5.13: Proof structure of (s � s) ; np ` s / (np \ s) (left) and its
corresponding abstract proof structure
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s/(np\s)
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Figure 5.14: Applying the G1 conversion, and the L; and R/ contractions to
the abstract proof structure of Figure 5.13

the configuration allows us to rewrite according to any of G1, G2, G3 or G4,
choosing G1 produces the structure shown on the right of Figure 5.14.

This structure is in the right configuration for both the L; and the R/
contraction (the par links are connected by both tentacles without the arrow to
a corresponding tensor link). Figure 5.14 shows we can contract the abstract
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proof structure to the tensor tree which corresponds to the following sequent.

(s� s); np ` s / (np \ s)

The proofs showing equivalence of the proof net calculus with the sequent
calculus are easily adapted to the case of LG (Moot 2007b).

The Lambek-Grishin calculus is a type of classical logic, but only in the
weak sense that it allows structures on both the left- and the right hand side
of the turnstile. As a consequence, computing the derivational, lambda term
meaning for proofs in the Lambek-Grishin calculus does not have the same
simplicity as it has for the intuitionistic logics we have seen so far. However,
we can use continuation based techniques to compute lambda terms from
proofs in LG (Bernardi & Moortgat 2010, Bastenhof 2013). Even though
this complicates the way we obtain lambda terms from proofs, continuation
based semantics gives us more flexibility as well. In addition, we obtain the
same lambda term assignments from proof nets, although at the price of some
technical complications (Moortgat & Moot 2013, Section 3.2).

5.2.3 Associativity

As already noted by Moot & Puite (2002), adding associativity to a multi-
modal system is done by allowing links with an arbitrary number of premisses,
and replacing explicit rebracketing operations by a successive reduction of a
binary tree with n leaves to a single link with n premisses of the form shown
below.

...
x1 xn

y

We will call links of this form combs. Table 5.8 shows the contractions for
an associative mode i (although, in general, most grammars will have only
one associative mode, in which case we will not indicate the mode explicitly).
These contractions look more involved than they are. For example, the asso-
ciativity structure conversion Ass, takes two combs where the conclusion xi
of the first comb is a premiss of the second comb. It operates by replacing xi
by the premisses y1, . . . , ym. The key points to observe are that this opera-
tion reduces the total number of links, and that it preserves the yield of the
structure; successive application of the Ass rule will transform each tree with
branches of mode i into a single comb with the leaves of this initial tree as its
premisses. The •E contraction allows us to contract a •E par link whenever
its two conclusions are adjacent premisses xi, xi+1 of a single comb. Similarly,
the /I and \I contraction remove, respectively, the last and first premiss of a
comb.

As usual, the contractions for /I and \I have the side condition that the
comb has at least one other premiss to avoid empty antecedent derivations.
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Table 5.8: Contractions under associativity for mode i

5.2.4 Wrap and the Displacement calculus

From a purely logical point of view, the Displacement calculus is a standard
multimodal logic, and this is reflected at the level of the proof structures: we
have the Lambek calculus connectives /, •, \ and corresponding structural
connective ‘+’ and the discontinuous connectives ↑k, �k, ↓k and correspond-
ing structural connective ‘×k’. As discussed in Section 2.2, k is either the
pair >, < (denoting the wrap operation at, respectively, the leftmost and
rightmost insertion point) or the set integers between 1 and the sort of the
leftmost argument of ×k (denoting wrap at the kth insertion point). Given
the discontinuous idiom “rang up” assigned to lexical term rang + 1 + up of
sort 1, and the formula (np\s) ↑> np, and “everyone” assigned the standard
Displacement calculus formula for quantifiers (s ↑> np) ↓> s, this lexicon
produces the formula unfolding shown in Figure 5.15.

These are the standard multimodal formula unfoldings and we can connect
the atomic formulas as usual to produce the proof structure shown on the left
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Figure 5.15: Unfolding for the sentence “Mary rang everyone up”.
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7→

Figure 5.16: Proof structure (left) and abstract proof structure (right) for the
unfolding of “Mary rang everyone up” shown in Figure 5.15.

of Figure 5.16. Where the Displacement calculus distinguishes itself from
multimodal proof nets is at the level of the abstract proof structures. In the
Displacement calculus, formulas are interpreted as expressions of the form
a1 + 1 + . . . + 1 + an (such as expression is of sort n, for n ≥ 0, where n
is the number of separator symbols ‘1’), corresponding to (n + 1)-tuples of
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Table 5.9: Structural contractions for associativity and wrap

strings11, and a wrap operator α ×k β which replaces the kth occurrence of
the separator symbol in α by β. What this means for the proof structure to
abstract proof structure translation is that a vertex (formula) in the proof
structure can correspond to a comb a1 + 1 + . . . + 1 + an if that formula is
of sort n. For our example, this is simple: only rang + 1 + up is replaced by
a comb. We also replace the ‘+’ links by two-premiss combs. This produces
the abstract proof structure shown on the right of Figure 5.1612.

For a correct proof net calculus, we need to provide the graph rewrites
which correspond to the logical and structural rules of the Displacement cal-
culus. Table 5.9 shows the structural rules for associativity and wrap on
abstract proof structures. The associativity rules is the one we have see in
the previous section (Figure 5.8) and the wrap structural rule ×k rewrites
Wk(α1 +1+α2, β) to α1 +β+α2 when the separator symbol 1 is the kth one
in the structure (in other words, when α1 contains k − 1 separator symbols;
for ‘>’, leftmost wrap, we require that α1 contains no separator symbols, and
for ‘<’, rightmost wrap, we require that α2 contains no separator symbols).

Table 5.10 shows the logical contractions of the Displacement calculus.
They are a natural reflection of the natural deduction rules from Table 2.7.
The extraction operator ↑k checks that the link is attached to a comb of the
form α1+β+α2 and produces a comb of the form α1+1+α2 (β can be of the

11To avoid cumbersome verbosity, for expressions of sort 0, we will use the term ‘strings’
instead of the more precise ‘1-tuples of strings’.

12If we want to be fully precise, the vertex “everyone” and the rightmost conclusion of
the ↑> link (which is also the right premiss of the ×k link) should both be one-premiss
combs. For convenience, we will treat these vertices as of sort 0 as one-premiss combs when
applying the rewrite rules.
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Table 5.10: Logical contractions for the discontinuous connectives

form b1 + 1 + . . .+ 1 + bn according to the sort of the corresponding formula,
and therefore multiple consecutive premisses of the comb can be removed by
an ↑k step). The contraction has the standard condition that α1 contains k−1
separator symbols. The net effect of the ↑k contraction is that it withdraws a
hypothesis of the appropriate sort and leaves a separator symbol at the place
of this hypothesis, just like the ↑k I rule.

The contraction for ↓k removes a (possibly complex) circumfix of the form
α1 +1+α2 from around β (in the same way as the ↓k I rule), whereas the �k
rule replaces premisses of the form α1 +β+α2 by the structure at v1 (that is,
the structure computed for the corresponding product formula A �k B, just
like the �kE rule).

Because of the potentially many string segments for each formula in the
proof structure, the logical contractions look a bit intimidating. In practice,
however, the number of string segments is generally small: the maximum
used by Morrill et al. (2011) is three segments (and therefore two separator
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Figure 5.17: Contractions for the abstract proof structure for the sentence
“Mary rang everyone up” shown on the right of Figure 5.16.

symbols).

As an illustration, Figure 5.17 shows how the structural and logical con-
traction interaction for the abstract proof structure of Figure 5.16. We start
with the ×> contraction, which replaces the leftmost (and only) occurrence of
1 in the comb of rang+1+up by the vertex which is the rightmost conclusion
of the ↑> link (corresponding to the hypothetical noun phrase). Applying the
associativity rule produces the structural shown on the left of Figure 5.17. We
then apply the ↑> contraction to withdraw this hypothetical np and leave a
separator symbol at its place. Finally, we apply the wrap operation to replace
the separator symbol by “everyone”, thereby showing we have a proof net of
“Mary rang everyone up”.

With respect to the multimodal proof nets, the main technical complica-
tion is that formulas can correspond to multiple string segments. However,
we can apply all of the standard machinery to prove the proof net calculus
produces exactly the same proofs as natural deduction (Moot 2016).

While it is a drawback of the graph rewriting calculus that confluence
never holds automatically, it does hold for the fragment of the Displacement
calculus containing only the binary multiplicative connectives (the residuated
triples /, •, \, and ↑k, �k, ↓k).

As an advantage over the translation of the Displacement calculus into
first-order linear logic, the current translation can be unproblematically ex-
tended to other connectives, such as the ‘split’ connective ∨. However, adding
the split connective means we lose confluence: the contraction for this con-
nective, like the corresponding logical rule, allows us to insert a separation
marker anywhere (provided it is the kth separation symbol in the result).
Starting with a hypothesis a : C the split rule allows us to continue in the
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following two ways13, with the terms a+ 1 and 1 + a behaving differently in
most contexts.

a : C
1 + a : ∨C

∨I
a : C

a+ 1 : ∨C
∨I

So while the graph rewriting perspective allows us to handle a larger fragment
of the Displacement calculus, the price of this larger fragment is a loss of
confluence in the rewrite system14.

5.2.5 Beta-reduction, hybrid grammars and NLλ

Hybrid type-logical grammars combine the Lambek calculus with lambda
grammars. For the Lambek calculus part of the logic, we can simply use
the standard links and contractions for associativity. The logical links for the
linear implication ‘(’ are not a problem either. Where hybrid type-logical
grammars (and lambda grammars/abstract categorial grammars) change from
other type-logical grammars is that they allow linear lambda terms in their
structures.

Linear lambda terms and abstract proof structures

Given that abstract proof structures reflect the structure of the logic we are
using, this means we need to find a way to add application and abstrac-
tion to abstract proof structures, but also a way to perform beta/eta reduc-
tion. However, this is not very complicated: there are many ways to imple-
ment lambda terms unambiguously — trees with back pointers, hypergraphs
(de Bruijn 1972, Kuske 1995, Statman 2007). Given that our abstract proof
structures are hypergraphs, we choose to use a graph-like representation for
(linear) lambda terms, with application represented by a binary term con-
structor ‘@’ and lambda abstraction by a tensor link labeld λ with a single
premiss and two conclusions. The intended meaning of this link is that the
premiss of the link can correspond to any term M , that the rightmost conclu-
sion corresponds to the abstracted variable x and that the leftmost conclusion
corresponds to λx.M . The labeled versions of the links for application and
abstraction are shown below. Note, however, that the labels are not part of
the structure and are only presented to indicate how linear lambda terms are
translated into abstract proof structures.

M N

(M N)

@

λx.M

λ

x

M

13The problem is not restricted to forward chaining proof search. Backward chaining
proof search has the same problem with the ∨E rule.

14Of course, when a rewrite system is not confluent, the immediate question we should
ask is: can we reformulate it in such a way that it becomes confluent? However, I am not
sure such a reformulation is possible for ‘∨’.
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Table 5.11: The graph conversions for hybrid type-logical grammars

The tensor links in abstract proof structure represent the allowed structures
in our logic. In hybrid type-logical grammars (as in lambda grammars) these
structural can contain (linear) lambda terms, and therefore the lambda ab-
straction link ‘λ’ and the application link ‘@’ are both tensor links. However,
this also means the structures are no longer necessarily trees. For our cor-
rectness condition, we want to contract to a structure representing a linear
lambda term. One way to enforce this is as follows.

1. the abstract proof structure should be a tree when we remove all branches
between λ links and their rightmost conclusion (corresponding to the
abstracted variable),

2. this tree should have a path from the rightmost conclusion of a λ link
to its premiss.

We will call abstract proof structures satisfying these conditions lambda graphs.
The conditions implement the essential net conditions of Lamarche (1994), but
can also be seen as a way of interpreting our hypergraph-theoretic represen-
tation of lambda terms as a tree with backpointers from the bound variables
to their binding lambda abstraction. Together with the standard conditions
on proof structures (restricting each node to be at most once a premiss and
at most once a conclusion), these conditions ensure each variable is bound
exactly once. In other words, lambda graphs represent linear lambda terms
as abstract proof structures.

Proof nets for hybrid type-logical grammars

To obtain a proof net calculus for hybrid type-logical grammars, all that is
missing are the graph contractions and structural rewrite operations. Ta-
ble 5.11 shows the graph conversions which are added to that ‘standard’ con-
versions of associativity and the Lambek calculus contractions to obtain proof
nets for hybrid type-logical grammars. Both contractions look a bit unusual
and require some comments.

The ( I contraction is not of the ‘standard’ form for residuated connec-
tives, where a par link is connected to a tensor link and both are removed.
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A2
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A3
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N [x := M ]

→
β

M

@

λx.N

(λx.N)M

λ

N

A2

A1

A3

x

Figure 5.18: Beta conversion as a structural rule with term labels added.

This is because the residuated par links verify the structure is of the required
form for the contraction. The ( I rule, repeated below, does not have such
a required on the structure for rule application.

Γ, x : A `M : B

Γ ` λx.M : A( B
( I

In the proof net calculus, we therefore simply replace the par link for the
( I rule with a lambda tensor link. This has the net effect of adding an
abstraction to the structure, which is the desired effect for the ( I rule.
However, we need to be careful. To avoid accidental capture of variables,
correct application of the( contraction requires that c2 is a descendant of h,
through a path which does not pass through any par links. This amounts to
verifying the structure produced by the ( I contraction represents a linear
lambda term.

The β contraction, as its name suggests, is the reflection of (linear) beta
reduction in abstract proof structures. The term-labeled version of the β
contraction shown in Figure 5.18 makes the correspondence to beta reduc-
tion clear. Note that β reduction defined this way is correct only because of
the condition on the ( I rule, which ensures that term N has exactly one
occurrence of variable x.

With this in place, it is fairly easy to show that the proof net calculus
for hybrid type-logical grammars corresponds exactly to its natural deduction
calculus, and that it satisfies cut elimination. In addition, the rewrite rules for
abstract proof structures are confluent (Moot & Stevens-Guille 2019, Moot &
Stevens-Guille 2021)

133



5. Graph rewriting

To illustrate the usefulness of the calculus, Kubota & Levine (2012) pro-
pose the formula (tv(s)((tv(s)(tv(s with prosodic term λQ.λP.λv.(P v)+
and + (Qε) for the coordinator “and” in gapping constructions (where tv is
short for (np\s)/np). The idea of this lexical entry is that it selects two
sentences, each missing a transitive verb tv, then selects a transitive verb
and inserts it in the leftmost sentence, whereas in the rightmost sentence the
missing transitive verb is assigned the empty string at the term level. The
advantage of this type of analysis is that it is now easy to get the desired
semantics of the sentence.

Looking at this lexical entry in terms of proof nets, the abstract proof
structure corresponding to this formula and its assigned term is shown in
Figure 5.19 (the occurrences of tv have not been unfolded). The three λ
links correspond to the abstractions over Q (corresponding to the rightmost
sentence missing a transitive verb), P (corresponding to the leftmost one) and
v (corresponding to the transitive verb). This is again just a graphical way
to represent the lambda term assigned to the lexical entry. The unfolding
of the lexical formula and its prosodic term has produced an abstract proof
structure which can be further reduced by beta reduction — this is a fairly
standard partial evaluation strategy on proof nets, which in the context of
type-logical grammars is often applied on the meaning level (de Groote &
Retoré 1996, Morrill 1999). In the context of proof nets for hybrid type-logical
grammars, we can generally simplify the lexical abstract proof structures like
this (Moot & Stevens-Guille 2021, Section 4.7) After performing the three
beta reductions, we obtain the abstract proof structure shown on the right of
Figure 5.19.

We can combine this abstract proof structure with the standard assign-
ments for “John”, “logic”, “Charles”, “phonetics” (all assigned np in the
lexicon) and “studies” of type tv = (np\s)/np to produce the abstract proof
structure shown on the left of Figure 5.20. The transitive verb “studies” has
been connected to the tv hypothesis of “and”15, whereas the two tv conclu-
sions of “and” have been unfolded and combined with the four lexical noun
phrases. For the ( I contractions, the paths starting at the bent edges end
up back at the root, thereby verifying that the par links labeled λ are valid
linear lambda terms when we turn them into tensor links: they correspond to
λx.John + (x+ logic) and λy.Charles + (y + phonetics) respectively, where in
both cases the abstracted variable represents the position of the missing tran-
sitive verb. The right hand side of Figure 5.20 is a graphical representation
of the following lambda term.

((λx.John + (x+ logic)) studies) + and + ((λy.Charles + (y + phonetics)) ε)

We can then reduce the two beta redexes, replacing x by studies and y
by the empty string ε, and remove the empty string to produce the desired
string.

(John + (studies + logic)) + (and + (Charles + phonetics))

15To avoid making the structure overly complicated, neither “studies” nor the tv hy-
pothesis with which it is matched have been unfolded.
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Figure 5.19: Abstract proof structure of the lexical entry for gapping from
Kubota & Levine (2020), before and after β reductions.

The logic of scope

As discussed in Section 2.5, the logical rules of the logic of scope (Barker &
Shan 2014, Barker 2019) are those of a standard multimodal logic with two
modes, and corresponding binary tree constructors ◦ and ◦w. This second
constructor is the scope-taking or discontinuous constructor, and its behaviour
is controlled by the following structural rules.

Ξ[Γ[∆]] ` C
Ξ[∆ ◦w λx.Γ[x]] ` C λ

Ξ[∆ ◦w λx.Γ[x]] ` C
Ξ[Γ[∆]] ` C λ−1

The structural rules have the condition that each x used in the rules is unique
in the proof. The structural rules are clearly inspired by beta reduction and
expansion in the linear lambda calculus.

∆ ◦w λx.Γ[x]↔ Γ[∆] ≈ ((λx.M [x])N) ≡β M [N ]
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Figure 5.20: Abstract proof structure for “John studies logic and Charles,
phonetics”

Given the preceding, it is then simple to provide a proof net calculus for NLλ:
we have the standard multimodal contractions for the two binary modes and
the structural rules given in Table 5.12. Similar to the proof nets for hybrid
type-logical grammars, we need the side condition that the node labeled c1
is a descendant of the node labeled h2 by a path not passing through par
links. This again ensures our graphs represent linear lambda terms. Another
way to see this condition is that it ensures that we maintain the property
that structural rewrites always operate in the same component. Note also
that the β conversion of Table 5.12 is left-right symmetric with the one from
Table 5.11.

We can use an inductive proof similar to those of Moot & Puite (2002) and
Moot & Stevens-Guille (2021) to show that the proof net calculus defined this
way generates the same theorems as the sequent calculus for NLλ (Moot 2020,
Section 3.4). However, some of the other properties of the calculus are not
so clear. For example, the \wI (or \wR) rule can remove a structure which
corresponds to a ‘beta redex’ as shown below, and this raises questions about
confluence of the operations.

B ◦w λy.Γ[y] ` A
λy.Γ[y] ` B \w A

\wI

Another potential problem is that the expansion rule β−1 increases the size of
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Table 5.13: Derived rule for NLλ.

the structure. However, once we remove the ‘detours’ created by combinations
of β−1 with β (which we can always eliminate), we can show that in NLλ
all useful applications of the β−1 rule must be immediately followed by a
\wI rule (Barker 2019, Section 2.2) (Moot 2020, Section 4). In terms of
natural deduction proofs, this means the β−1 rule only occurs in the following
context, where it extracts a B formula from any position in the antecedent
while ‘marking’ the place it came from by an abstracted variable y.

Γ[B] ` A
B ◦w λy.Γ[y] ` A β−1

λy.Γ[y] ` B \w A
\wI

This means we can replace the β−1 rewrite by the derived rules shown in
Table 5.13. This derived rule inherits the condition from the β−1 rule that c2
should be a descendant of h in a path not passing through par links.

This derived rule is just the left-right symmetric rule of the contraction for
( I we have seen for proof nets in hybrid type-logical grammars in Table 5.11,
with the same side condition to guarantee the result represents a linear lambda
term, so this is again a case of diverging logical paths which arrive at the same
destination.

The similarity between NLλ and hybrid type-logical grammars goes fur-
ther that this, as illustrated by Table 5.14. In many case, we have structures
which are isomorphic (up to some trivial left-right symmetries), and the same
graph rewrites which can apply to them. There is, of course, the difference
that HTLG (in its standard formulation) is associative, whereas NLλ (also in
its standard formulation) is not, but this is easily harmonised if desired (by
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HTLG NLλ
+ link ↔ ◦ link
@ with premisses p1 − p2 ↔ ◦w with premisses p2 − p1
λ tensor (lexicon) ???
( I par with conclusions c1 − c2 ↔ \w par with conclusions c2 − c1
??? /w, •w par links
contractions for /, \ ↔ contractions for /, \
??? contraction for •
( I par rewrite ↔ β−1\w rewrite
β rewrite ↔ β rewrite
η rewrite ↔ contraction for \w
??? contractions for /w, •w

Table 5.14: Translations between HTLG and NLλ.

adding/removing the associativity structural rules from the calculus), or even
ignored when it is irrelevant for the particular linguistic analysis.

While Table 5.14 has a number of ‘holes’, indicated by ‘???’, where a
construction in one calculus does not have a clear equivalent in the other
one, a number of key linguistic analyses can be translated between the two
formalisms without problem.

For example, take the lexical assignment for gapping shown, in its beta
reduced form, on the right of Figure 5.19. The corresponding NLλ formula is
((tv •w (tv \w s))\s)/(t •w (tv \w s)), where t is the formula equivalent of the
empty string in NLλ, and tv is short for the transitive verb type (np\s)/np
as usual16.

Inversely, to get the correct reading of sentence (2) below, Barker & Shan
(2014) propose the formula (np \w s) /w ((n/n) \w (np \w s)) for “same”.

(2) Everyone read the same book.

The key property of sentence (2) that Barker & Shan (2014) want to capture
is that it has an ∃∀ reading but no ∀∃ reading (where every student reads a
potentially different book). To understand the intuition behind the type as-
signment, we must remember that quantifiers in NLλ are assigned the formula
s /w (np \w s), which moves a noun phrase out of a sentences and then inserts
the quantifier formula in the place of the extracted noun phrase (as shown
in Section 2.5). The formula for “same” selects as its argument a sentence s
missing both an adjective n/n and a noun phrase np (while keeping track of
their positions). The resulting np \w s formula then serves as the argument
of the quantifier. This has the net effect of the quantifier taking the place of

16This formula looks a bit odd and unlike other formulas for coordination, however there
is some precedent for using these types of formulas (Morrill 1994, Section 4.3.4, uses a similar
formula), and from the perspective of linear logic the formula (tv( s)( (tv⊗(tv( s))(
s has a Curried version (tv ( s) ( (tv ( s) ( tv ( s which is a standard coordination
formula. Note, however, that although this Currying operation is valid in multiplicative
linear logic, it is not valid in NLλ for the given gapping formula.
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Figure 5.21: Proof structure and abstract proof structure of the word “same”
according to the analysis of Barker & Shan

the extracted noun phrase and “same” the place of the extracted adjective
(Moot 2020, Appendix C gives a proof net derivation for this example in full
detail).

Figure 5.21 shows the proof structure and abstract proof structure of the
formula unfolding for “same”. To translate this lexical entry to hybrid type-
logical grammars, we need to find an abstract proof structure which, using
beta reduction, reduces to a graph which is isomorphic to the abstract proof
structure on the right of Figure 5.21. This requires a bit of puzzling. First, we
translate the NLλ formula into its hybrid counterpart, replacing both B \wA
and A /w B by A ( B, which produces ((n/n) ( (np ( s)) ( (np ( s).
Given this formula, the string term of this lexical entry must be of type
(s → s → s) → s → s. In this case, the correct term is λPλx.((P same)x).
We verify this assignment translates the analysis of Barker & Shan (2014)
into hybrid type-logical grammar by unfolding the resulting lexical entry, then
applying the two β reductions. Figure 5.22 shows the result, and we can see
that the partially evaluated abstract proof structure on the right of Figure 5.22
is simply the left-right mirror image of the one on the right of Figure 5.21.

Kubota & Levine (2020, Section 5.3.2) propose a different analysis of
“same” and “different” in hybrid type-logical grammars. However, the current
translation of the analysis of Barker & Shan (2014) into hybrid type-logical
grammar facilitates a comparison between these different approaches (Kubota
& Levine 2020, Section 5.4.1.2, discuss some empirical differences between the
two analyses).

To conclude this section, although it would appear that representing lambda
terms by hypergraphs is cumbersome both from the typesetting perspective
and for the amount of space it takes with respect to the standard, flat rep-
resentation, we should not automatically identify notation which is easy to
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Figure 5.22: The analysis of “same” from Figure 5.21 translated into HTLG.

read by humans with notation which is easy for computer manipulation or for
proving meta-theorems (de Bruijn 1972). In the current case, our principal
interest has been the comparison between different type-logical grammars by
casting all of them as instances of a generic logical calculus.

5.3 Discussion

We have seen how the ‘proofs nets as graph rewriting’ perspective provides
an alternative analysis of modern type-logical grammars. A number of type-
logical grammars for which currently no translation into first-order linear logic
exists can be given a proof net calculus using this methodology. This includes
the Lambek-Grishin calculus and NLλ, but also the extended versions of the
Displacement calculus (notably including the split connective, but also the
unary connectives of multimodal grammars) and extended versions of hybrid
type-logical grammars (for example the multimodal version of hybrid type-
logical grammars from Kubota & Levine (2020, Chapter 11)). Taken together,
this means the proof net calculus is general enough to handle all modern type-
logical grammars.

The similarity between the Displacement calculus on the one hand, and
hybrid type-logical grammars and NLλ on the other is that the ‘insertion
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points’ and wrap operation of the former play a similar role as the abstraction
and beta-reduction operation of the latter, as indicated below.

W (α1 + 1 + α2, β) ≡ α1 + β + α2 ≈ ((λx.α1 + x+ α2)β) ≡ α1 + β + α2

While this similarity is rather approximative it does allow us give some trans-
lations between rules (and proofs) of the Displacement calculus and those of
hybrid type-logical grammars. But this approximation is fragile at a num-
ber of points: the Displacement calculus refers to multiple insertion points
by their linear order in the resulting output, something which appears anti-
thetical to the lambda calculus, where only the relative order of the lambda
abstractions is relevant. One the other hand, higher order lambda calculus
terms have no clear correspondence in the Displacement calculus.

From the graph rewriting perspective the correspondance between the
analyses of the Displacement calculus and hybrid type-logical grammars is
therefore not quite as immediate as it was in first-order linear logic (Sec-
tion 4.6). However, the graph rewriting perspective has shown us a number
of points of comparison between hybrid type-logical grammas and NLλ. So
thanks to first-order linear logic, we know that hybrid type-logical grammars
agree with the Displacement calculus for their respective analyses of quan-
tifiers, gapping and other phenomena. And thanks to the graph rewriting
perspective, we know that hybrid type-logical grammars agree with NLλ for
their analyses of quantifiers, gapping and other phenomena as well (although
this time modulo associativity).

This suggests there is a ‘common core’ of phenomena on the syntax-
semantics interface which are treated by most modern type-logical grammars,
but it also points the way to challenge formalisms by providing analyses in one
formalism which have no translations in the others, which can result in lively
(and healthy) debates about the relative advantages of different formalisms
(Kubota & Levine 2015, Morrill & Valent́ın 2017) (we have already seen some
of these comparisons in Sections 4.6 and 4.7).

An important missing point for the graph rewriting perspective is that
the current implementations (Moot et al. 2015, Moot 2015b) only handle the
multimodal version of proof nets, and would need a significant overhaul to
handle all of the more general cases presented in this chapter.
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6 Wide-Coverage
Semantics

This chapter presents my work on using type-logical grammars for wide-
coverage semantics. The section on neural proof nets, Section 6.5, is based on
joint work with Konstantinos Kogkalidis and Michael Moortgat (Kogkalidis,
Moortgat & Moot 2020b).

6.1 Introduction: natural language understanding in
the age of deep learning

Until fairly recently (Russell & Norvig 1995, Jurafsky & Martin 2009, Fer-
rucci, Brown, Chu-Carroll, Fan, Gondek, Kalyanpur, Lally, Murdock, Nyberg,
Prager et al. 2010, Dagan et al. 2013), systems for natural language under-
standing had a more-or-less predictable structure: there was a part-of-speech
tagger, a parser, a semantic representation language and a reasoning engine.
And although many of these components were at least partly statistical or
based on machine learning techniques, there were generally some intermedi-
ate structures (such as a parse tree or a logical representation of the meaning
of a text) we could inspect.

Recent advances in deep learning, however, have managed to obtain in-
credibly impressive scores on a wide variety of tasks, such as the GLUE
and SuperGLUE benchmarks (Wang, Singh, Michael, Hill, Levy & Bowman
2018, Wang, Pruksachatkun, Nangia, Singh, Michael, Hill, Levy & Bowman
2019). The GLUE and SuperGLUE benchmarks include many of the stan-
dard tasks in natural language understanding: anaphora/coreference resolu-
tion, entailment, question answering. Modern language models such as GPT3

143



6. Wide-Coverage Semantics

(Brown, Mann, Ryder, Subbiah, Kaplan, Dhariwal, Neelakantan, Shyam, Sas-
try, Askell et al. 2020) and the various BERT systems (Devlin, Chang, Lee &
Toutanova 2018, Liu, Ott, Goyal, Du, Joshi, Chen, Levy, Lewis, Zettlemoyer
& Stoyanov 2019, He, Liu, Gao & Chen 2020) obtain remarkable results on
each of these tasks, using an end-to-end machine learning architecture. That
is, there is no recognisable parser, no recognisable meaning representation, no
explicit inference engine. Yet, for many tasks the performance can be classified
as superhuman1. Are the parser and the formal meaning component really
superfluous? Or are they implicitly present in the billions of parameters of
BERT and GPT3? These general-purpose language models obviously capture
some knowledge of the language they model, but, although it is hard to de-
termine what is and isn’t represented in their many parameters, the evidence
seems clear that a lot of basic knowledge is missing.

One of the great strengths of deep learning models (and machine learning
models in general) is exploiting patterns in the data. And one of the main
worries of developers of deep learning applications is that their models do not
generalise outside the training data (this is the standard problem of overfitting
in machine learning). To reduce overfitting, the original data is normally split
into a test set, a development set and a training set, with the test set kept
under lock and key until the model has been finalised using the training and
development sets. The final model is then evaluated against the test set.
Given that the test set contains data which have not been seen up until this
point, the model performance on the test set gives a fair evaluation of the
performance on unseen data. However, we should be careful about two things.
First, when we do too many evaluations against the test set, the test set can
no longer be considered to be truly unseen. Second, the original datasets (the
training, development and test sets) are likely to be more similar to each other
than to other data we would find ‘in the wild’. This is why we should not
expect a machine learning model trained on a journalistic dataset such as the
Penn Treebank or the French Treebank to perform as well on other texts, such
as social media posts. The holy grail of machine learning is for the algorithm
to learn exactly the right patterns in the input data. Inversely, the greatest
worry of a machine learning developer is that the models will instead learn a
statistical shortcut which doesn’t generalise on truly unseen data.

A number of authors have taken models which performed well on some
of the standard benchmarks (entailment, question answering, etc.) and have
tried to make them fail on slight modifications of the data. As a first type of
test, Jia & Liang (2017) test a large number of question-answering systems as
follows. The take a standard question-answer pair from the data set, such as
the following.

1We should of course be very skeptical about classifying AI performance as superhuman.
As we will see, just like humans, these machine learning systems have blind spots, they just
have different blind spots than humans do.
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Paragraph Peyton Manning became the first quarter-back ever to
lead two different teams to multiple Super Bowls. He
is also the oldest quarterback ever to play in a Super
Bowl at age 39. The past record was held by John
Elway, who led the Broncos to victory in Super Bowl
XXXIII at age 38 and is currently Denver’s Execu-
tive Vice President of Football Operations and General
Manager.

Question What is the name of the quarterback who was 38 at
Super Bowl XXXIII

Prediction John Elway

The manipulation performed by Jia & Liang (2017) is to add an irrelevant
sentence (at least as far as the question is concerned) such as “Quarterback
Jeff Dean had jersey number 37 in Champ Bowl XXXIV” at the end of the
input paragraph and evaluate the models on these new data. This changes the
prediction to “Jeff Dean”. Some clever additional test are performed: models
are retrained on the new dataset, but then simply learn to ignore the last
sentence and fail on the original dataset.

In a second type of test, McCoy, Pavlick & Linzen (2019) show that it is
fairly easy to generate adversarial examples for textual entailment systems as
well. They show that heuristics such as lexical overlap and subsequence can
be used to entice textual entailment systems to give incorrect responses like
the following.

(1) a. The doctor was paid by the actor
b. The doctor paid the actor (not entailed from (1-a), but incorrectly

predicted as entailed)

(2) a. The doctor near the actor danced
b. The actor danced (not entailed from (2-a), but incorrectly pre-

dicted as entailed)

Gururangan, Swayamdipta, Levy, Schwartz, Bowman & Smith (2018) have
directly tested for overfitting by presenting entailment tasks with only the
hypothesis and not the text from which we need to conclude whether the
hypothesis is entailed, contradicted or neither. This means that for the en-
tailment examples above, the model is given only the b sentences but not
the a sentences2. Surprisingly, these models perform quite well, exploiting
annotation artefacts like the fact that the presence of “no” or “nobody” is a
fairly reliable indicator of ‘contradiction’. Another indicator of contradiction
is “sleeping” because it contradicts most other physical activities. Niven &
Kao (2019) do similar experiments for the analysis of natural language ar-
guments and their conclusions are harsh: for their dataset, “the entirety of

2Logicians will surely note that we can make some reliable inferences in these cases:
if b is a logical contradiction, then ‘contradiction’ is justified, whereas if b is a tautology,
then ‘entailment’ is justified. However, such cases do not generally appear in entailment
datasets, and even if they did, it think it would be good to at least warn the user when
either of these is the case.
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BERT’s performance can be accounted for in terms of exploiting spurious
statistical cues”.

As a fourth type of test, Glockner, Shwartz & Goldberg (2018) and Sanchez,
Mitchell & Riedel (2018) show that natural language inference models per-
form poorly on inferences requiring lexical knowledge, as found in ontologies
such as WordNet or JeuxDeMots (Lafourcade 2007, Fellbaum 2010). Perfor-
mance is especially poor for unseen antonyms, and categories such as planets,
countries, nationalities and ordinals.

Finally, Pham, Bui, Mai & Nguyen (2020) show that many of the results
of natural language understanding systems are more or less invariant under
random permutations.

None of this is supposed to belittle the impressive progress made on nat-
ural language understanding tasks, but it should make us wary of claims of
superhuman performance. Adherents of the end-to-end machine learning ap-
proach believe that these problems point to the need for better datasets (and
indeed SuperGLUE was developed at least in part with this purpose in mind)
or maybe better machine learning algorithms.

Only the reader for whom this is the first chapter — in that case: wel-
come, no offence taken — will doubt that I am more on the side of good
old-fashioned AI. While I believe that machine learning is a useful tool in
many cases, I also believe that using machine learning is in many ways an ad-
mittance of defeat: it shows that we have failed to understand the problem in
a way which allows us to explain it to a computer, or, more alternatively, that
we have failed to find a computationally feasible algorithm. What I believe
the experiments mentioned above show is that even current state-of-the-art
deep learning systems suffer from a lack of explicit syntactic analysis, a lack
of explicit meaning representation, and a lack of explicit world knowledge.
However, I acknowledge that a significant research effort is required to bring
such a natural language understanding system up to the level of the best per-
forming deep learning systems. There is probably no panacea: whereas deep
learning systems are robust in some areas but fragile in others, classic systems
augmented with deep learning are likely to be robust and fragile in different
areas.

Another important topic in machine learning is explainability: we not only
want our machine learning system to provide the correct response, but also an
explanation as to why this is the correct response, allowing humans to verify
the soundness of the reasoning. This is especially true in high-stakes domains
such as medicine, where a wrong diagnosis can put the lives of patients at
risk.

When we replace the single, big black box of an end-to-end machine learn-
ing system by a series of small black boxes with intermediate results, it be-
comes much easier to analyse errors produced by the system3. The inter-
mediate results also provide a built-in form of explainability. In the case of

3A standard criticism against such a setup is that it causes errors to propagate. That
is, if, say, the part-of-speech tagger makes a mistake, then the parser will take this mistake
as its input (and maybe adds some errors of its own), and so on. However, errors need
not propagate like this. We can, for example, use a neural network which outputs different
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Figure 6.1: Type-logical grammar parsing in a nutshell

logical semantics, such explanations would be aimed more at logicians and at
formal semanticists than at the end users of a machine learning system, but
these intermediate structures could serve as the basis of explanations which
are understandable by domain experts.

6.2 Type-logical grammars and wide-coverage
semantics

Figure 6.1 represents the standard treatment chain for type-logical grammars.
Text is input to the system, a lexicon transforms the text into statement to
present to a theorem prover, which, when successful, returns a proof. This
proof is then translated to a proof in multiplicative linear logic, which, by the
Curry Howard isomorphism, is equivalent to a linear lambda term. Finally the
lexicon is reconsulted to recover the lambda terms assigned to the individual
words (these lexical lambda terms are generally not linear). Beta-reduction on
this term then produces a term representing a formula (in first- or higher-order
logic, or some other meaning representation language). Finally, depending
on the logic chosen for meaning representation, standard theorem provers
compute entailments, contradictions, etc. between the meanings assigned to
different texts. The reader is invited to refer all the way back to Section 1.3
for a detailed example of how we produce a logical formula starting from an
input sentence.

Now, when we want to adapt this picture to wide-coverage parsing, what
are the main bottlenecks, and where would machine learning be most helpful?
The naive way of converting an appropriate treebank — such as the TLGbank
or Æthel (Moot 2015d, Kogkalidis, Moortgat & Moot 2020a) — into a type-

structures at different levels.
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logical grammar lexicon simply extracts all the lexical entries found in the
treebank and gives the resulting grammar to a theorem prover. The problem
with this is twofold. First, when using a treebank as basis, many common
words, such as the coordinations “and” and “or” but also the forms of “to
be” and different prepositions will have too many lexical assignments to allow
effective parsing. Second, no matter how large the treebank, unseen text will
still contain a non-negligible percentage of unseen words. Lexical lookup is
therefore a prime candidate for a machine learning solution.

After lexical lookup, we could in principle let one of the type-logical theo-
rem provers run with the result. This would enumerate the available readings
for the given lexical assignments. However, for natural language understand-
ing applications, we are generally interested not in an enumeration of all
readings but rather in the ‘correct’ reading of the sentence. Just like it is
hard to give explicit rules for the correct formula in the given context, it is
hard to specify how to obtain the right reading — and, consequently, the right
semantics — for a sentence. So this would be another area where machine
learning could help.

Finally, theorem proving in first- or higher-order logic is undecidable.
There are a number of possible solutions to this. Firstly, we can do as Bos
& Markert (2005) and try an off-the-shelf first-order logic prover while at the
same time running a model finder to find a counter model. This works sur-
prisingly well, and suggests that the natural language inference tasks do not
use logically sophisticated forms of reasoning. A second solution is to use a re-
stricted but decidable logical fragment for reasoning. Natural logic is family of
restricted logical calculi whose inference patterns are directly relevant for nat-
ural language entailment (Moss 2010, Moss 2015), and these logics can be very
effective for natural language understanding tasks as well (Abzianidze 2017).
Finally, we could also decide to use machine learning here. In many ways,
proof search is a game just like Go or chess: the rules are clear, we know
when we have won (found a proof) and in some cases also when we have lost.
An important difference is that the search space is not bounded. However,
it appears reinforcement learning algorithms such as AlphaZero (Silver, Hu-
bert, Schrittwieser, Antonoglou, Lai, Guez, Lanctot, Sifre, Kumaran, Graepel
et al. 2017) or its variants could — with a sufficiently large dataset of exam-
ples — become an effective theorem prover for logical statements obtained
from natural language inference tasks.

Summarising, we have identified three places where machine learning would
be useful in a type-logical natural language processing framework.

• Lexical lookup. Given the lexicon size some sort of approximation seems
more or less unavoidable. This will be the topic of Section 6.3

• Parsing, for finding the ‘best’ proof for a statement. This is more easily
avoided, we can also use a standard parser and return the first proof
found given the probability distributions of the supertagger. Lewis &
Steedman (2014) call this supertag-factored parsing. Supertag-factored
parsing can be used for type-logical grammars as well (Moot 2010, Moot
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2015d) and we will discuss it in Section 6.4. However, a way of combining
supertagging and proof net proof search into a neural network, neural
proof nets (Kogkalidis et al. 2020b), will de discussed in Section 6.5.

• On the semantic side, machine learning has its place for word sense
disambiguation, for example when we want to distinguish “right” (the
opposite of “left”) from “right” (the antonym of “wrong”). Although
we will have little to say about word sense disambiguation (for solutions
developed for incorporation into a system like ours, we refer the reader
to Lafourcade, Mery, Mirzapour, Moot & Retoré 2017, Mirzapour 2018),
we will discuss meaning assignment in Section 6.6.

• Finally, the use of neural networks for theorem proving with logical
meaning representations will not be explored here, but left to future
research. This means the end result of our processing chain will be the
logical representation of the meaning a text.

6.3 Supertagging

Given a type-logical treebank, such as those developed by Moot (2015d) or
Kogkalidis et al. (2020a), we can obtain a lexicon by simply reading of the
lexical leaves of all derivations. However, there are a number of obstacles to
using the resulting grammar for parsing.

1. When using the parser on unseen text, no matter how big our initial
treebank, there will typically be a percentage of unseen words. This
will mean the parser will not find an analysis at all.

2. Many frequent words will be assigned a very large number of formulas.
This is a considerable bottleneck: having to consider dozens of formulas
for many words will, at best, make any parser extremely sluggish and
unsuitable for all but the shortest sentences.

3. Exhaustive search of all readings for all formula assignments, although
appropriate and useful for small and linguistically accurate grammars, is
not feasible for wide-coverage parsing. We are typically only interested
in getting the ‘right’ reading of a sentence.

These problems are all standard when using wide-coverage parsers and
automatically extracted grammars. An influential solution is the use of a
so-called supertagger (Joshi & Srinivas 1994, Bangalore & Joshi 2011). A
supertagger is like a part-of-speech tagger (assigning words their syntactic
category, typically ‘N’ for noun, ‘V’ for verb, etc.) but using richer lexical
descriptions. In the case of type-logical grammar, a supertag is simply a
formula in our logic. A supertagger is essentially a program which performs a
statistical approximation of lexical lookup, and, as such, any type of machine
learning algorithm can be used for a supertagger. We will evaluate a few of
these algortithms below.
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6.3.1 Maximum entropy

Maximum entropy models (Berger, Della Pietra & Della Pietra 1996) were
an important advance in statistical modelling. Their advantage over earlier
statistical models was that it was easy to use multiple ‘features’ without any
assumptions of statistical independence. In the context of maximum entropy,
a feature can be any predicate which is true or false of the input. Typical fea-
tures for maximum entropy taggers include things such as ‘the current word is
capitalised’, ‘the next word is the end-of-sentence marker’. Maximum entropy
models were the state-of-the-art on many tagging tasks — including part-of-
speech tagging and supertagging — at least before modern deep learning took
over. We will discuss deep learning taggers in the next section (Section 6.3.2).

The maximum entropy taggers of Clark & Curran (2007) were used with
great success on the CCGbank, so as a first benchmark we can test how well
their taggers work on the TLGbank. We have used their tools as-is, with no
tuning or modification to the parameters. The standard use of the Clark &
Curran tools is as a chain, which takes (tokenised) text as input, and then does
a part-of-speech (POS) tagging step, and uses the output of the part-of-speech
tagger as input to the supertagger4.

The TLGbank provides, for each word, POS tags from two different tag
sets: the treetagger tagset (Schmid 1997) and the MElt tagset (Denis & Sagot
2012). Part-of-speech tagging is a task which is generally considered to be
‘solved’: the best POS taggers have an accuracy in the 97-98% range which
is about the same accuracy humans have for this task. For the TLGbank, the
maximum entropy taggers assign 98.25% of MElt tags correct and 94.41% of
the treetagger tags (with both tags correct for 97.99%).

However, part-of-speech tag errors are propagated to the supertagger and
this can lead to errors. For example, given that the TLGbank is based on a
journalistic corpus (the largest part of the corpus consists of newspaper articles
from the French journal “Le Monde”), it has some gaps in its vocabulary.
One such gap is the second person pronoun “tu”, which appears only four
times in the Le Monde part of the TLGbank — “tu” is the familiar personal
pronoun, the polite version, “vous” is generally used — and similarly the
word “marché”, which can be a noun (meaning market) or a past participle
(meaning walked), appears only as a noun. In these cases, errors of the part-of-
speech tagger are not recoverable by the supertagger. Other errors of the part-
of-speech tagger, such as confusing the subjunctive tense with the present,
or the French imparfait with the conditional, have little influence over the
supertagger results (although the last type of POS-tag error will propagate
to the semantic analysis discussed in Section 6.6).

Table 6.1 shows the supertagger results for the different sets of part-of-
speech tags (merged denotes the concatenation of the MElt and treetagger
tags). The value β is a parameter indicating how many formulas are assigned
to each word. Let w be a word, and p the model-assigned confidence in its

4Their tools include a Combinatory Categorial Grammar parser as well, which has not
been used here.
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Supertagger results with gold part-of-speech tags
β = 1 β = 0.1 β = 0.01 β = 0.001

Correct F/w Correct F/w Correct F/w Correct F/w
Merged 90.41 1.0 96.31 1.4 98.37 2.3 98.80 4.5
Melt 90.36 1.0 96.42 1.4 98.43 2.4 98.88 4.5
Tt 90.12 1.0 96.25 1.4 98.39 2.4 98.84 4.6

Combined POS-tagger/supertagger results
β = 1 β = 0.1 β = 0.01 β = 0.001

Correct F/w Correct F/w Correct F/w Correct F/w
Merged 88.71 1.0 94.77 1.4 97.23 2.4 98.06 4.5
Melt 88.78 1.0 94.83 1.4 97.22 2.4 98.10 4.5
Tt 88.79 1.0 95.05 1.4 97.55 2.4 98.26 4.6
Direct 86.87 1.0 94.81 1.5 97.30 2.9 97.94 6.2

Table 6.1: Maximum entropy supertagger results

best supertag, then we output all formulas with probability greater than βp.
So with p = 0.7 and β = 0.1 we assign all formula with probability greater
than 0.07. This has the advantage that more formulas are assigned to words
about which the model has more ‘doubts’, but only a single formula when it
is sufficiently confident in its assignment.

We can see from the tables that the results are fairly robust with respect
to the part-of-speech tagset. When we look only at the best formula for each
word, between 90.1 and 90.4% are assigned the correct formula. When we use
β = 0.01, we move up to 98.4% of the words which have the correct formula
among their assignments (with an average of around 2.4 formulas per word).

However, these are the results when we take the correct part-of-speech
tags as given. To give a fairer indication of performance, the bottom of Ta-
ble 6.1 lists the results of the combination of the part-of-speech tagger with
the supertagger. With only the best formula for each word, this gives around
88.8% of words the correct formula (compared to 90.4% for the best models
with the gold POS-tag), and with β = 0.01 this increases to a bit over 97%
(compared to 98.4% with the correct POS-tag given).

As a second evaluation, Table 6.2 shows the evaluation of the models on
data outside of the French Treebank. In addition to the data from the French
treebank, the TLGbank contains additional data: “Le Monde” articles from
2010 (the same newspaper as the French treebank, but at a different time),
articles from “L’Est Républicain” (a different French newspaper) and articles
from the corpus of the Itipy project5 containing books mostly from the 19th
century describing different voyages through the Pyrenees mountain range.
We take the French Treebank section of the TLGbank and split it into a
test and a training section. We then use the three other sections as separate
sections and evaluate the performance of the tagger, which has now only seen
the training portion of the French Treebank, on these four different test sets.
We see that performance of the supertagger (and the part-of-speech tagger)

5https://richardmoot.github.io/Itipy/
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Corpus POS Super 0.1 0.01 F/w
French Treebank 97.8 90.6 96.4 98.4 2.3
Le Monde 2010 97.3 89.9 95.8 97.9 2.2
L’Est Républicain 97.3 88.1 94.8 97.6 2.4
Itipy/Forbes 95.7 86.7 93.8 97.1 2.6

Table 6.2: Supertagger and part-of-speech tagger performance on the different
sections of the corpus

degrades when we move to different periods, different journals, and different
writing styles. Note that Table 6.1 lists the results of the combined TLGbank
corpus, of which the French treebank section is only a part.

The part-of-speech tag models and supertag models — for use with the
taggers of Clark & Curran (2007) — can be found at the following address.

https://github.com/RichardMoot/models

6.3.2 Deep learning

The use of neural networks for natural language processing is very old (Rumelhart
& McClelland 1986). However, a number of recent developments have greatly
advanced the state-of-the-art in many areas in natural language processing,
and deep learning models now are systematically the state-of-the-art for most
tasks (but refer back to Section 6.1 for some caveats). Two of these important
advances are the following:

1. the development of different kinds of word embeddings, including ELMo,
BERT, fastText and GPT-3 (Peters, Neumann, Iyyer, Gardner, Clark,
Lee & Zettlemoyer 2018, Devlin et al. 2018, Brown et al. 2020),

2. the development of new kinds of neural architectures, notably long short-
term memory (LSTM, Hochreiter & Schmidhuber 1997) and the trans-
former (Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser &
Polosukhin 2017).

The word embeddings allow us to transform words (as sequences of char-
acters) into fixed-length vectors which can then serve as the input layer of a
neural network. Modern embeddings work equally well for unseen words, and
the embedding generally takes information about the context of the word into
account as well.

The sequence model architectures of LSTM and the transformer allow us
to model dependencies between words at any distance — the LSTM using a
memory mechanism and the transformer an attention mechanism allowing it
to learn which inputs are relevant for producing the output. This should be
contrasted with older statistical models (including maximum entropy models)
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dev test
F/w Acc.w Acc.s F/w Acc.w Acc.s

β = 1 1 93.22 33.08 1 93.17 33.17
β = 0.1 1.1 95.67 47.52 1.1 95.68 47.59
β = 0.01 1.5 97.53 63.84 1.5 97.43 62.16
β = 0.001 2.9 98.58 76.25 3.0 98.56 75.23
β = 0.0005 3.8 98.81 79.30 3.8 98.82 78.44

Table 6.3: ELMO LSTM supertagger performance

which typically used a fixed window as their context, generally consisting only
of the previous two words and the next two words.

We have used the French ELMo embeddings of Che, Liu, Wang, Zheng &
Liu (2018) together with a simple two-layer (bidirectional) LSTM network.
The first LSTM layer outputs the two different part-of-speech tags, whereas
the second LSTM layer outputs the supertag. This setup has been chosen to
remove, as much as possible, the dependence of the supertagger on the correct
part-of-speech tag and avoid propagation of errors (which was a problem for
the maximum entropy taggers).

6.3.3 Comparison and evaluation

Table 6.3 shows the performance of the LSTM supertagger. It separates the
performance on the development set (dev) from the performance of the test
set (test). The important evaluation is on the test set, but the similarity of
performance on the dev and test set suggests there is relatively little overfitting
on the dev set (this is always a potential problem with machine learning
problems). The table lists the average number of formulas assigned to each
word for different values of β as ‘F/w’, and it lists both the word level (Acc.w)
and sentence level accuracy (Acc.s). Sentence level accuracy measures whether
for each word, the correct formula is among those assigned to it6.

Compared the the maximum entropy supertagger, the gain in accuracy is
important. Even when the gold part-of-speech tag was given, the maximum
entropy supertagger assigned the correct formula in 90.4% of cases (without
the correct POS tag, only 88.7% of the words are assigned the correct formula).
The LSTM supertagger assigns 93.2% of words the correct supertag, and does
so without POS tag information. Even though the advantage diminishes when
we increase the β value (as with the maximum entropy results, a lower β
value results in more supertags per word), the advantage of the LSTM tagger
remains.

6This should be confused with the most likely provable sequent given the assignments
(and their probabilities) being the correct one. It only shows that, in principle, the parser
could find the correct parse but not that it actually does so. We will use this much harder
evaluation in the section on neural proof nets (Section 6.5).
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Figure 6.2: Comparison of the maximum entropy versus the LSTM supertag-
ger

It is a bit complicated to compare Table 6.3 directly with Table 6.1. The
β value is not really the value which interests us: for parsing, it is the trade-
of between precision (that is, the supertagger providing the correct supertag
among its possibilities) and the number of formulas per word. Too many
formulas per word will reduce parsing speed, but a precision which is too
low will not allow us to find a proof at all. Figure 6.2 therefore plots the
performance of the maximum entropy supertagger against the performance
of the LSTM supertagger. The real comparison is of course between the
green curve (representing the maximum entropy tagger using the output of
its corresponding part-of-speech tagger) and the blue one, although a slight
advantage over performance of the supertagger when given to gold POS tags
remains.

The figure also makes it clear that the final 1% of word level precision is
where the real difficulties are. At the sentence level, everything is much harder.
While a bit less than a third of all sentences are unproblematic (that is, they
can be fully parsed using only the best supertag for each word) there is also the
final 20% which is very hard. In this context, ‘very hard’ means that the parser
will make at least one mistake, although not all parser mistakes necessarily
translate into a problem for downstream tasks. However, this still means that
many linguistically interesting phenomena are currently out of reach for the
parser. As an example of this problem, the gapping examples which we have
seen several times since sentence (23) in Section 1.5.2, have been annotated
as such in the TLGbank (Moot 2015d, Appendix B.4). However, since these
constructions are quite rare (they occur in a bit over 1% of sentences) the
supertagger generally does not assign a high enough probability to the gapping
type to allow us to find the correct analysis7.

7If we are really interested in gapping, we can of course fix this at the machine learning
level, for example by adding significantly more gapping examples or by more severely pe-
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The supertagger can be found at the following address.

https://github.com/RichardMoot/DeepGrail

6.4 Supertag-factored parsing

Once we have found a set of formulas for each word in the sentence, the next
step consists of finding a type-logical analysis using these formulas. The su-
pertagger described in the previous section has assigned each word a limited
number of formulas, assigning each formula a probability. For a supertag-
factored parser (Moot 2010, Lewis & Steedman 2014), we only use the su-
pertag probabilities for deciding the most likely parse: the parser actions
themselves are not assigned weights, they simply combine the probabilties of
the supertags (treating these probabilities as independent), although we can
assign preferences to, say, right-branching over left-branching structures.

The parser of Moot (2018a) is an instance of the ‘deductive parsing’ tech-
nology of Shieber et al. (1995), using the same core parsing engine with a
number of special rules for the treatment of extraction, gapping and related
phenomena.

The current chart parser was originally introduced as a preprocessing step
for a proof net algorithm (Moot 2017). However, this preprocessing step
turned out to be so effective that it soon handled a bit under 98% of the
complete French Type-Logical Treebank and therefore it made sense to add
additional chart rules to handle the remaining few percent as well.

Each chart item is assigned a probability, the lexical entries get their prob-
ability from the supertagger and the rules then specify how these probabilities
are combined. As is fairly standard, the implementation doesn’t use proba-
bilities and then multiply them, but rather uses log probabilities and adds
them. This prevents problems with precision and numerical underflow which
occur when we multiply many small probabilities.

The current implementation is quite flexible with respect to these combi-
nations: in supertag-factored mode, the log-probabilities of the rule premisses
are simply added for the rule conclusion. In bootstrap mode, the parser uses
the output of a context-free parser (such as the Stanford parser or the Berke-
ley parser) and adds extra penalty term for the number of brackets of the
bootstrap parse the resulting constituent crosses.

Following Lewis & Steedman (2014), we have also implemented an A*
parser. A* search is a standard AI algorithm (Russell & Norvig 1995, Sec-
tion 3.5.2) (Bratko 1986, Chapter 12), a type of best-first search using an
estimation of the best possible path to the goal from each state. For search-
ing a shortest path in a geographical information system, we know that we can
never do better than the Euclidean distance between the current point and
the goal. Similarly, for a supertag-factored parser, we can never do better to

nalising incorrectly tagged gapping constructions. However, this trade-off will likely leave
parser performance worse in many constructions unrelated to gapping.
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complete the current parse state than using the highest probability supertags
for each of the non-yet-parsed words.

The chart parser can be found at the following address.

https://github.com/RichardMoot/GrailLight

6.5 Neural proof nets

The chart parser described in the previous section may seen a bit anti-climactic:
we spent many chapters extolling the virtues of proof nets, and then, finally,
when the need arose to move to large-scale analysis, we reverted back to classic
chart parser technology, and, moreover, using an incomplete implementation
of the logic!

Can we combine the benefits of deep learning with the benefits of proof
nets? Kogkalidis et al. (2020b) show that we can. As we have already seen in
several places, given a statement Γ ` C the search space of proof search using
proof nets can be summarised by a set of square matrices, one for each atomic
formula, with the positive and negative occurrences of the atomic formulas
the rows and columns of the matrices. Each perfect matching of the atomic
formulas is a proof structure, a potential proof of the input sequent. In the
context of wide-coverage parsing, we are not only interested in whether there
exists a proof net for the input, but we also want the ‘right’ proof net, that
is the proof net which corresponds to the intended reading of the sentence.

The task for neural proof nets is therefore the following: given an input
sentence, we transform the words into formulas (that is, supertagging, as we
have already seen in in Section 6.3), we unfold the formulas as usual, then
have the neural network learn the intended reading (that is, matching of the
atomic formulas) based on examples from an annotated corpus.

To makes this discussion more concrete, Examples (3) and (4) present two
noun phrases (both part of larger sentences) from the Æthel treebank.

(3) een
a

kermis
fair

waarop
on which

snoepjes
candy

verkocht
sold

werden
were

en
and

gedroogde
dried

wijting
whiting
a fair where candy was sold and dried whiting

(4) de
the

series
series

die
which

hij
he

aan
to

zijn
his

medewerkers
collaborators

had
had

overgeleverd
passed on

the series which he had passed on to his collaborators

Figure 6.3 shows the formula unfolding (given the correct formulas/supertags).
The np formulas have been given integer indices to facilitate referring the spe-
cific atomic formulas. To save space “een kermis” (a fair), “gerookte wijting”
(dried whiting), “de series” (the series), and “aan zijn medewerkers” (to his
collaborators) have been treated as atomic constituents, all except the last one
of type np; “aan zijn medewerkers” is analysed as the prepositional phrase
pp labeled “azm” and “gerookte wijting” as the np labeled “gw”. The actual
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Figure 6.3: Formula unfolding for Examples (3) and (4)

annotation of these examples also includes semantic role labelling (subject,
object, modifier, etc.) for each dependency.

As is clear from the two unfoldings the main difficulty lies in matching
the np formulas. Our model (Kogkalidis et al. 2020b) computes Dutch BERT
embeddings (de Vries, van Cranenburgh, Bisazza, Caselli, van Noord & Nissim
2019) as a first step, and uses a transformer for supertagging8. The supertag
output can be manually inspected, but is passed directly to the axiom linking
component. The transformer architecture learns a vector for each atom in the
supertagger output; since it is a transformer it can use the full context (in the
current case, the BERT word information but also the context in its formula
and the surrounding formulas). For the noun phrases in Example (3), the
transformer obtains a 5×1 vector for both the positive and the negative noun
phrases. We multiply these vectors, the positive with the transpose of the
negative to obtain a 5× 5 matrix, which we normalise to obtain a probability
distribution (that is, all rows and all columns sum to 1 and all values are ≥ 0).
We have used square matrices to represent the combinatorics of proof search
throughout this book, but now we have a probabilistic version of proof net
proof search.

Our model learns the preferred reading of a sentence by sending the square
matrices through a Sinkhorn layer (Sinkhorn 1964, Mena, Belanger, Linder-
man & Snoek 2018). A Sinkhorn layer updates the weights in the matrix in

8Contrary to previous supertaggers this supertagger outputs the supertags as sequences
of symbols. It can therefore propose previously unseen formulas.
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Figure 6.4: Proof nets corresponding to the formula unfoldings of Figure 6.3

such a way that iteration pushes one value in each row and one value in each
column closer to one and all other values closer to zero. In terms of proof
nets, this forces a specific axiom linking.

It should be noted that the logic is fully commutative, so the neural model
has to ‘learn’ all word order information. In addition, the neural network has
to learn the correctness condition for proof nets. However, the count check is
automatically enforced by the restriction to square matrices for the Sinkhorn
layer.

To summarise, our neural proof nets operate as follows:

1. words are translated into contextualised BERT embeddings,

2. a transformer layer translates the BERT embeddings into formulas; for-
mulas are treated as sequences of characters (allowing the lexicon to
suggest unseen formulas),

3. vectors of positive and negative atomic formulas are multiplied to pro-
duce square matrices,
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Metric Beam size Baseline
b = 1 b = 3 b = 7 Alpino

Formula correct 85.5 92.4 93.4 56.2
Sequent correct 57.6 68.0 70.2 n/a
Term correct 60.0 67.7 69.6 45.7

Table 6.4: Results of the neural proof net parser

4. a Sinkhorn layer produces a matching of the atomic formulas.

Together, the output of the supertagger component — as shown in Fig-
ure 6.3 — and the output of the Sinkhorn layer uniquely determine a proof
structure (although not necessarily a proof net). Figure 6.4 shows the correct
proof nets for the unfolding of Figure 6.3.

Table 6.4 summarises the results of the neural proof net parser. The parser
uses beam search with parameter b representing the beam size (with beam b,
only the b best possibilities are expanded at each step). The first row lists
the supertagger performance. Since the Æthel treebank has more distinct
formulas and much higher lexical ambiguity than the TLGbank, supertag-
ger performance is good. The row ‘sequent correct’ denotes the cases where
all correct formulas have been assigned by the supertagger. The row ‘term
correct’ gives the percentage of sentences for which the neural parser has ob-
tained the correct lambda term. This essentially means that the parser has
made no errors (or at least none which could affect the meaning assignment)
and it is a very strict evaluation: most parsers are evaluated by measuring the
percentage of correct parser actions (or correct brackets) rather than only on
whether they produce exactly the right structure. As such, getting between
60 and 70% sentences fully correct is quite good.

For comparison, we have used the Alpino parser (Bouma, van Noord &
Malouf 2001), an older, maximum entropy inspired Dutch parser, which uses
a large handwritten grammar and which is still quite close to state-of-the-art
for Dutch. Running the Alpino parser (without time limits) on our test set
and using the methodology of Kogkalidis et al. (2020a) to translate the Alpino
parse into a linear logic derivation9, we can compare the performance of our
parser against Alpino. We note that compared to Alpino, our neural proof
net parser represents a significant improvement both on the number of correct
formulas and with respect to the correctly assigned meaning terms to unseen
sentences.

6.6 Semantics

The parsers of the previous sections (the supertag-factored parser and the
neural proof net parser) produce linear lambda terms corresponding to the

9This is possible because the Lassy treebank, which we used for the extraction of Æthel,
consists of Alpino output which has been manually corrected.
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derivational semantics of the input. Although these can be directly used for
applications in natural language understanding (Abzianidze 2017), we are
also interested in wide-coverage semantics, which requires a way of assigning
meanings to the proofs obtained by our parsers.

6.6.1 Three models for the basic units of meaning

In computational linguistics, there are three basic ways to represent meaning,
each with their different strengths and weaknesses. For many applications,
we use more than one of these.

1. the meaning of a word is a vector in n-dimensional space, giving an
abstract relation to other words,

2. the meaning of a word is a node in a lexical network, specifying its rela-
tions to other words (its synonyms, antonyms, hyponyms, hypernyms,
etc.),

3. the meaning of a word is a lambda term specifying how to construct a
logical formula representing its meaning.

There are many different ways of computing vector-based or distributional
meanings for words. In the modern era (Mikolov, Chen, Corrado & Dean
2013) most word representations are estimated from large corpora using some
type of neural network, and these include ELMo and BERT we have seen
before. As noted by Mikolov et al. (2013), these distributional meanings do
capture some interesting facts of morphology (relating different forms of the
same verbs, or adjectives and their corresponding adverbs) and some world
knowledge as indicated by calculations like the following.

Paris− France + Italy = Rome

sushi− Japan + Germany = bratwurst

In the equations above ‘+’ and ‘−’ denote vector addition and subtraction,
whereas the word on the right hand side of the ‘=’ symbol is the nearest word
(according to the embedding) of the vector computed on the left hand side of
the equation. We should read these calculations as something like ‘Paris is to
France as x is to Italy’ and ‘sushi is to Japan as y is to Germany’ with the
results x = Rome and y = bratwurst computed through the vector meanings.

Table 6.5 shows the nearest words for the French word “amour” (love),
using the embeddings provided by Fauconnier (2016). It’s a relatively varied
list, and the listed words are semantically close but in different ways.

In spite of the successes of embeddings like BERT for entailment tasks,
it does not seem clear to us how to use vector based meanings for individ-
ual words can be used to obtain logic-based meanings except in the rather
roundabout way we have discussed in the previous sections of this chapter:
use the embeddings as input to compute the formulas (Section 6.3) and then
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amour love 1.0
tendresse tenderness 0.71
bonheur happiness 0.67
amitié friendship 0.59
platonique platonic 0.57

Table 6.5: Similarity for vector-based meanings

amour
love

hâıne
hate

indifférence
indifference

sentiment
feeling

enfant
child

epouse
wife

antonym

antonym

patient
patient

is a

Figure 6.5: The meaning of “amour” (love) according to JeuxDeMots

the proofs (Sections 6.4 and 6.5). This confirms better to our initial goal of
our natural language processing framework providing explainable intermedi-
ate steps.

The second theory of meaning assigns each word a node in a lexical net-
work. In this context, a small part of the meaning of “amour” (love) as
provided by the lexical network JeuxDeMots (Lafourcade 2007) is shown in
Figure 6.5. The lexical network provides useful information such as the fact
that “love” is a “feeling” and an antonym to words like “hate” and “indiffer-
ence” but also that typical patients10 of love are wives and children.

The information in the lexical network is directly useful for entailment.
We can infer that ‘x loves y’ contradicts ‘x is indifferent towards y’, using the
antonym or that it contradicts ‘x has no feelings towards y’ using the fact
that love is a feeling. The typical patients can also be used as information for
an anaphora resolution system.

The final theory of meaning does not have a great deal to say about the
meaning of “love”. According to Montague (1970) the noun “amour” is simply
something that is true or false of certain entities where as the verb “aimer”(to
love) is an arbitrary relation between two entities in the domain. Montague

10The term ‘patient’ is a thematic relation denoting who or what undergoes an action
(often the grammatical object), whereas the ‘agent’ performs the action.

161



6. Wide-Coverage Semantics

(1974) adds both meaning postulates and possible worlds to this picture, but
this still does not provide a particularly profound theory of meaning. From the
abstract point of view of translating natural language expressions into formal
logic, it makes perfect sense to use logical predicate symbols for words such as
verbs and nouns, of course. And this does have the advantage that it is easy
to scale up. When we say that for every transitive verb v, its meaning is the
binary predicate v′ we simply sidestep (and leave for later, or for other people
to resolve) the hard linguistic and philosophical questions of when we can
accurately use this verb to describe a situation, and what this really means.

Montague semantics is mostly concerned with those words which use logi-
cal connectives as part of their translations, and it is these words about which
it has the most interesting things to say. The interesting thing is that these
are mostly closed-class words: “et” (and), “chaque” (every), “que” (which)
for which we can therefore list the semantic terms.

6.6.2 Montague style wide-coverage semantics

The advantage of Montague semantics for applications in wide-coverage se-
mantics is that we can treat many types of entries with one generic entry.
Suppose we see a new noun n in the text. Without knowing anything specific
about this noun, we can simply assign it the lambda term λx.(n′x) (or even
the equivalent, eta short term n′).

Adjectives Adjectives are already a bit more complicated. Given an ad-
jective a and a noun n there are (at least) the following two possibilities for
combining their meanings11.

λx.((a n)x) ∧ (nx) (6.1)

λx.((a n)x) (6.2)

A typical example of 6.1 would be a “big insect”, which would be an insect
and big compared to other insects although not necessarily a big animal. A
typical example of 6.2 would be an “alleged murder” who is not necessarily
a murderer, but only accused or suspected of being one. Our solution is
to use 6.1 as the the default, and list all exceptions requiring 6.2 explicitly
(this is quite a short list containing adjectives like “possible” and “présumé”
presumed).

Verbs With respect to verbs, the basic treatment is again simple. An un-
seen transitive verb v can be assigned the lambda term λyλx.((v′ y)x). How-
ever, as already noted by Montague (1974), some transitive verbs like “seek”

11Many authors have one or two additional types, the intersective adjectives λx.(a x) ∧
(nx) (a possible example would be “red” denoting the things that are both red and satisfy
the noun meaning, although it is reasonable to argue that even for “red” the meaning
depends on the noun a “red apple” and “red wine” have rather different colours) and the
privative adjectives λx.(a x) ∧ ¬(nx) (this last one is more debatable). Note that for both
of these we have changed the type of a from (e → t) → e → t to e → t (although one
possibility would be to define the second from the first using a2 ≡ (a1(λy.y = x))).
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do not necessarily entail the existence of their object and so “John seeks a
unicorn” need not entail the existence of unicorns. These are not the only
special properties verbs can have. For example, the following two sentences
are structurally very similar.

(5) John promised Mary to leave.

(6) John persuaded Mary to leave.

Sentence (5) means that John promised Mary that John would leave. Sen-
tence (6), on the other hand, means that John persuaded Mary causing Mary
to leave. In higher-order logic, this difference in meaning is easily expressed
by the following difference in meaning assignments, where only the argument
of the nested predicate P has changed.

λy.λPλx.promise(x, y, (P x)) (6.3)

λy.λPλx.persuade(x, y, (P y)) (6.4)

There is a limited number of verbs allowing constructions like (5) or (6), and
they are listed with the appropriate semantic term in our lexicon.

Factives and presuppositions Another important class of verbs are the
so-called factive verbs. These verbs have an embedded phrase as argument,
which is entailed even when in normally non-entailing contexts, such as in the
scope of negation (as in (7) and (8) below) and or a question (as in (9)), or
when in the antecedent of an implication (as in (10)).

(7) John didn’t know that Mary had filed for divorce.

(8) Mary didn’t regret filing for divorce.

(9) Does Mary regret filing for divorce?

(10) If John knows Mary has filed for divorce, he will probably ask her
out.

All of Sentences (7) to (10) entail that Mary filed for divorce. However, naive
computation of a logical form will not immediately give these entailments.
For example, a slightly simplified but otherwise standard meaning for (7) is
shown below as 6.5.

¬know(j,file for divorce(m)) (6.5)

Even when we add a higher-order axiom (or meaning postulate) such as 6.6
below, we cannot derive file for divorce(m) as we would like to.

∀x∀P know(x, P )⇒ P (6.6)

There has been a lot of discussion in the literature about how to obtain a
meaning like 6.7 for a sentence like (7).

file for divorce(m) ∧ ¬know(j,file for divorce(m)) (6.7)
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The actual properties of factive verbs, and more generally the larger class
of presuppositions, are fairly complex but there are a number of solutions
proposed in the literature (Gazdar 1979, Horn 1996, Beaver 1997). Our im-
plementation is a simplified version of the one proposed by van der Sandt
(1992). Presuppositions are used for proper names like “Jean” but also for
the definite article “le/la” (the) which all entail the existence of the referenced
object even in a non-entailing context. Factive verbs and a number of other
words and constructions having presupposition-like behaviour are indicated
as such in our lexicon.

Event semantics For the treatment of adverbs, we have followed the ap-
proach of Davidson (1980). Davidson proposes we analyse sentences like Sen-
tence (11) roughly as shown in 6.8.

(11) Jones buttered the toast in the bathroom with a knife at midnight.

∃e.butter(e, j, t) ∧ in the bathroom(e) ∧ with knife(e) ∧ at midnight(e) (6.8)

The event variable e denotes an event, essentially a slice of space-time. It is
used as an extra argument of “buttered”, so ∃e.butter(e, j, t) indicates that
there is an event e of Jones (j) buttering the toast (t). The advantage of this
is that the different adverbs now only have this event variable e as argument
and this gives us some useful entailments for free. For example, from (11)
both (12) and (13) are entailed.

(12) Jones buttered the toast with a knife.

(13) Jones buttered the toast in the bathroom and midnight.

Inversely, with the additional information that (12) and (13) describe the
same event, these two sentences together entail (11). This type of reasoning
is much more complicated with a higher order formula such as 6.9 below.

at midnight(with knife(in the bathroom(butter(j, t)))) (6.9)

Such an approach is also easily integrated with a theory of tense and temporal
semantics, with the temporal logic providing predicates over the events (or at
least the temporal aspect/interval of the event). For example, the past tense
would indicate that the event took place before the current time n (or at least
started before it12).

Discours Representation Structures Finally, instead of higher-order
logic for our semantic representation language, we have chosen Discourse
Representation Structures (Kamp & Reyle 1993). These provide a conve-
nient, graphical representation of logical formulas with dynamic binding (van

12Temporal semantics, like presupposition, is another big topic in semantics (Kamp &
Reyle 1993, Steedman 1997, Corblin & de Swart 2004, Verkuyl 2011). For our implemen-
tation of tense (Moot 2012), we have followed Verkuyl (2008).
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Eijck & Kamp 1997). In the form of a Discourse Representation Structure,
formula 6.8 looks as follows.

e, j, t

butter(e, j, t)

in the bathroom(e)

with knife(e)

at midnight(e)

The constants and existentially quantified formulas are shown in the top
part of the box and the predicates over these variables and constants are
shown in the bottom part. These are atomic formulas, implicitly joined by
conjunction. Other logical connectives such as implication, disjunction or
negation produce nested boxes. For example, the two readings of “every man
loves a woman” are shown below, with the “every” wide scope reading on the
left, and the “a” wide scope reading on the right.

x

man(x)
⇒

y

woman(y)

love(x, y)

y

woman(y)

x

man(x)
⇒

love(x, y)

One of the main advantages of Discourse Representation Theory is that is
provides a convient way of representing the variables accessible for anaphoric
reference. For example, variable y (corresponding to woman) is only accessible
in the rightmost DRS. This means that continuing the previous sentence with
a sentence like “she is getting very tired of all the attention” (with “she”
corresponding to the woman y) is only valid for the rightmost DRS and not
for the leftmost one.

6.6.3 The semantic lexicon

The current implementation contains 341 lexical patterns to assign formulas
to words given their lexical root form, part-of-speech tag and formula. This
includes nouns, adjectives, verbs, prepositions, etc. but also special cases for
things like factive verbs and weather verbs13. In addition to these generic
lexical lambda term recipes, there are 722 specific lexical entries for words
whose meaning is not as generic. This includes verbs like “être” (to be),
the different relative pronouns “que” (what/which), “qui” (who), the logical
connectives “et” (and) and “ou” (or) with their different syntactic formulas,
logical determiners “chaque” (each), “un/une” (a), “le/la” (the).

The lexicon gives a rudimentary treatment of a number of interesting se-
mantic phenomena: coordination, relative pronouns and extraction, presup-
position, tense, gapping. For generalised quantifiers, only the surface order

13Weather verbs like “pleuvoir” (to rain) are special only in that “il pleut” (it rains) is
translated as “pleuvoir(e)” without only an event argument and no subject.
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(that is, subject wide scope) is computed. This is because the French Tree-
bank does not contain annotations for the relative scope of quantifiers, and
adding this information is a complex and laborious task. To improve the
usefulness of the computed representation for entailment tasks, our seman-
tic representation would benefit from the incorporation of a designated word
sens disambiguation component, which matches the predicate symbols of our
meaning representation to nodes in a lexical network, thereby allowing us to
distinguish “souris” (mouse) as a type of rodent from “souris” (mouse) as as
a computer input accessory.

Although the current lexicon does not yet cover all 1,101 formulas of the
TLGbank, it allows us to compute the meaning for a large chunk of the
treebank.

6.7 Conclusion

In this chapter, we have presented our work on wide-coverage syntax and
semantics for type-logical grammars. Contrary to many popular approaches
today, we have been interested in using machine learning as little as possible,
using it only for lexical lookup and parsing. This means we produce a num-
ber of intermediate structures — formulas corresponding to words, proofs of
grammaticality of sentences and logical representations of sentence meanings
— which can be independently verified an explained. When a logical meaning
is produced, we trace back the choices which led to it. We have evaluated the
performance of our supertagger and neural proof net parser and have found
they performed well, with 92.2% of formulas correctly assigned for French
(Section 6.3.2), and with the correct proof for 69.6% of all sentences for our
Dutch treebank (Kogkalidis et al. 2020b)

Although the final output of our system is a logical structure mostly of
interest to the formal semanticist, I believe such structures can be fruitfully
used to natural language understanding tasks such as textual entailment and
question answering (as shown in an only slightly different context by Bos,
Curran & Guzzetti 2007, Abzianidze 2017).
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7 Conclusions and future
directions

After this brief tour through the landscape to type-logical grammars, it is
time to conclude. We have seen that type-logical grammars are a systematic
way of using logical calculi for natural language analysis, which puts special
emphasis on the syntax-semantics interface.

The failures of the Lambek calculus have inspired a number of variants and
extensions. On the surface, there appear to be many unreconcilable differences
between these logical calculi. However, when we look below the surface at the
underlying linear logic proofs used for calculating meaning, there is general
agreement. In other words, the ‘deep logic’ (intuitionistic linear logic) is
relatively uncontroversial, but there is disagreement mainly about the ‘surface
logic’, with different logical connectives, differently structured sequents, and
different structural rules.

I have presented two main ways to adapt proof nets to modern type-logical
grammars. These are two general frameworks for proof nets which together
capture all modern type-logical grammars.

The first framework, presented in Chapter 4, is a rather simple and stan-
dard fragment of linear logic, the first-order multiplicative fragment (Girard
1991, Bellin & van de Wiele 1995). As already shown by Moot & Piazza
(2001), first-order linear logic has the Lambek calculus as a natural fragment,
but this can be extended to lambda grammars, hybrid type-logical grammars,
and (a large part of) the Displacement calculus (Moot 2014a, Moot 2014b,
Moot 2015a).

The second framework, presented in Chapter 5, is inspired by the inter-
action nets of Lafont (1989, 1995) and the multimodal proof nets of Moot
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& Puite (2002). It uses a simple form of graph rewriting to represent log-
ical statements and verify their correctness. Compared to first-order linear
logic, which needs to summarise all structures and operations with a finite
number of variables and constants, the graph rewrite perspective is more
powerful and flexible, and as such it can represent all modern type-logical
grammars. In addition to the formalisms representable in first-order linear
logic, we also represent multimodal type-logical grammars, NLλ, the extended
version of hybrid type-logical grammars of Kubota & Levine (2020, Chap-
ter 11), and the Lambek-Grishin calculus (Moot & Puite 2002, Moortgat &
Moot 2013, Moot 2016, Moot 2020, Moot & Stevens-Guille 2021).

These new and/or alternative proof systems for type-logical grammars
provide us with a number of benefits, besides providing redundancy-free rep-
resentations of proofs.

1. In many cases we get new results with respect to computational complex-
ity essentially for free. For example, we have simple NP completeness
proofs for the Displacement calculus and hybrid type-logical grammars.

2. Representing different formalisms in a single framework facilitates the
comparison of different linguistic analyses in these frameworks. In first-
order linear logic, we can use the derivability relation between trans-
lations of formulas in different frameworks. For example, the analy-
sis of gapping in the Displacement calculus and in hybrid type-logical
grammars turn out to produce equivalent formulas upon translation in
first-order linear logic. In the graph rewriting perspective, we can show
isomorphism between structures, and equivalence between rewrite op-
erations. This, for example, allows us to show that some of the iconic
analyses in hybrid type-logical grammars (such as gapping) and in NLλ
(such as the analysis of “same”) are intertranslatable; this gives new
analyses of these phenomena in the translation targets.

3. We can, in many cases, combine multiple logics into a single logic. For
example, with respect to linguistic phenomena like across-the-board ex-
traction1, which are a problem for hybrid type-logical grammars, we can
choose to combine the first-order translations of hybrid grammars with
those of the Displacement calculus, or alternatively, we can combine the
graph-theoretic operations of hybrid grammars with those of NLλ.

4. We can use a single theorem prover engine for multiple grammatical
frameworks, as illustrated by Moot (2015c). This theorem prover uses
proof nets for first-order linear logic as an underlying engine for find-
ing proofs in lambda grammars, Lambek grammars, hybrid type-logical
grammars and Displacement grammars. If the grammar writer wants,
the first-order linear logic proofs can be completely hidden, and both
the input grammar and output proofs can be provided in the desired
logic. Unfortunately, there is, as of yet, no similar engine for the graph
rewriting perspective.

1We have seen across-the-board extraction as example (17) in Section 1.5.2.
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Taken together, the two proof net frameworks for modern type-logical
grammars show that, despite starting for different logical primitives, there
is much greater convergence than has previously been assumed. There is a
‘common core’ of phenomena which most formalisms can treat elegantly, but
also some differences around the edges which require more careful investigation
to evaluate the relative benefits of one formalism over another.

Finally, in Chapter 6, we have shown how to use type-logical grammars for
wide-coverage syntax and semantics. While the logical and formal study of
our grammar formalisms is very important, it is also important to show how,
at least in principle, these formalisms are useful for some of the standard
tasks of natural language understanding. This includes systems for natural
language question answering and for recognising textual entailment.

Doing such research requires a certain amount of machine learning and a
large set of annotated examples. We have developed two such datasets, the
French TLGbank (Moot 2015d) and the Dutch Æthel treebank (Kogkalidis
et al. 2020a). We use machine learning models trained on these treebanks
both for lexical lookup (so-called supertagging) and for proof search, culmi-
nating in a system of neural proof nets (Kogkalidis et al. 2020b). Both the
supertagger and neural parser receive very good results — over 93% correct
supertags (Moot 2019) and 60-70% of proof net parses essentially without er-
rors (Kogkalidis et al. 2020b) (that is, the correct lambda term was obtained).
The final lambda terms (or the logical semantic representation) can then be
used for downstream tasks in natural language understanding, something we
will leave for future research. However, we have shown that, far from being
just a theoretical tool, type-logical grammars can also be used, at least in
principle, for applications in natural language understanding.

7.1 Open questions and future research

Formal language theory One of the big open questions for the different
type-logical grammars is to obtain a precise characterisation of the language
classes generated. With the exception of multimodal categorial grammars
and the Lambek calculus (which generate the context-sensitive and context-
free languages respectively) we know next to nothing about upper bounds
for language classes. Most formalisms can easily be shown to generate some
variant of the mildly context-sensitive languages, but the techniques used in
the proof of Pentus (1995) are difficult to generalise to other formalisms:

1. Buszkowski (1997) shows that, whereas for Lambek grammars we can
always guarantee that interpolants do not increase the maximum size of
formulas, this can no longer be guaranteed in a commutative context.

2. Moot & Retoré (2019) show by a simple counting argument that a
meaning-preserving translation such as Pentus’ cannot translate a type-
logical grammar treating quantifier scope into a mildly-context sensi-
tive grammar with at least one derivation for each reading (essentially
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because an n quantifier sentence requires n pointers, whereas mildly
context-sensitive formalisms can only use a constant number of them).

3. Emms (1993) shows that type-logical grammars easily generate language
classes closed under permutation, because the same mechanism used to
handle medial extraction allows us to move arbitrary words to the front
of the sentence, thereby generation arbitrary permutations. However,
the formal language classes known to handle permutation closure such
as Range Concatenation Grammars (Boullier 1999) also allow other op-
erations such as copying which appear to be outside the language classes
handled by type-logical grammars2.

By only looking at the Horn clause fragments of type-logical grammars (that
is, without embedded implications, allowing formulas only of the following
form F ::= p | p( F , for p atomic) we avoid all of the problems listed above
and obtain some equivalences (and thereby lower bounds for the general logics)
(de Groote & Pogodalla 2004, Wijnholds 2011). However, restricting ourselves
to the Horn clause fragment amounts to giving up on all the strong points of
type-logical grammars at the level of the syntax-semantics interface.

Beyond multiplicatives We have only considered the multiplicative con-
nectives throughout this book. However, there is a good case to be made for
using a more expressive logic for natural language analysis. The linear logic
additives, exponentials, and second-order quantifiers all have some proposed
linguistic applications (Moot 2002, Section 2.5). The problem with adding
them is that these groups of connectives increase complexity of the proof the-
ory and the computational complexity of the logic. Morrill (2014) provides
a logic with additives, exponentials (and many other connectives: there is
a total of 49 different connectives) but without second-order quantifiers. I
would like to use cleaner and more standard logic for natural language analy-
sis. One promising candidate for such a logic would be a version of soft linear
logic (Lafont 2004). This logic has additives, exponentials and second-order
quantifiers, to which I would propose to add the first-order quantifiers. To
find a decidable fragment of this extension of soft linear logic, we could look
at restrictions on the application of the second-order quantifiers, similar to
the results of Perrier (1999).

For the linguistic applications of the additives, it appears we handle most
or all of the applications using complex axioms of the following forms.

A1& . . .&An ` B1& . . .&Bm (7.1)

B1 ⊕ . . .⊕Bm ` A1 ⊕ . . .⊕An (7.2)

2I conjecture that type-logical grammars generate mildly context sensitive languages
and their permutation closures.
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With the condition that each of the Bi is identical to one of the Aj formulas,
some valid instances would be the following.

A&(B&C) ` A&C

A⊕ C ` (A⊕B)⊕ C

In such a setup we can avoid the (proof theoretically) complicated ⊕E and
&I rules. For example, it is easy to add such restricted additives to a proof
net theorem prover as additional non-determinism in the formula unfolding
stage. Although as a logician, I am never happy about removing logical rules,
with respect to the linguistic applications, we do not seem to need them3:
neither Bayer (1996) nor Kubota & Levine (2020, Appendix A.3), even men-
tion the ⊕E and &I rules, even though they handle all the standard linguistic
examples.

Comparing proof systems, comparing analyses While we have made
a number of comparisons between different type-logical grammars as well as
their analyses of different phenomena on the syntax-semantics interface, many
questions remain open here as well. While the question ‘which type-logical
grammar is the best for natural language analysis?’ is unlikely to have a
definite answer, the differences between formalisms and analyses, especially
cases where one formalism has a clear advantage, require further study. This
can be done linguistically (for example by providing an appealing analysis of
certain phenomena in the chosen framework and challenging other formalisms
to provide an analysis which works as well) but also logically (by showing that
certain analyses have no translation in some formalism).

Graphs and theorem proving The graph rewriting perspective on proof
nets, at least in the general form presented in Chapter 5, has been imple-
mented only for the multimodal case (Moot et al. 2015, Moot 2015b), where
components are rooted trees and not more general graphs. Moving from trees
to graphs amounts to a non-trivial (to say the least) change in the code base.
One promising avenue of research would be to write a proof net module for an
existing graph rewrite tool. There are a number of tools which use interaction
nets (or some extension of it) as their basis (Ueda 2009, Fernández, Kirch-
ner & Pinaud 2019), so these would — at least a priori — have the required
functionality.

Neural proof nets as graph neural networks The neural proof nets
of Section 6.5 integrate proof net proof search with modern deep learning
methodology. As an alternative to the approach of Kogkalidis et al. (2020b),
it seem promising to use one of the many variants of graph neural networks
(Wu, Pan, Chen, Long, Zhang & Yu 2019, Liu & Zhou 2020) for our neural
theorem prover.

3The additives, together with associativity, also allow us to compute intersections of
string languages, which is a powerful operation in formal language theory since it moves us
outside of the mildly context sensitive formalisms (Kallmeyer 2010).
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Applications in natural language entailment Wide-coverage seman-
tics, as discussed in Chapter 6, is a first step in a treatment chain for classical
tasks in natural language processing, such as entailment. There are several
possible ways to combine the output of our wide-coverage parser with a ‘stan-
dard’ theorem prover for first-order or higher-order logic, and use this combi-
nation for natural language entailment tasks4. There are several ways to do
this. We can feed the formulas representing the meaning to an off-the-shelf
theorem prover and hope it terminates (Bos et al. 2007). We can also pro-
gram a set of tactics suited to natural language inference in a general-purpose
proof assistant such as Coq, as done by Mineshima, Mart́ınez-Gómez, Miyao
& Bekki (2015). Finally, we can restrict ourselves to a decidable logical frag-
ment and use this to calculate entailments (Moss 2010).

4Many entailment datasets have logically strange notions of entailment and contradic-
tion. For example, “two dogs sit” is assumed to contradict “three cats play” (Bowman,
Angeli, Potts & Manning 2015) which would be a strange result for a logical system.
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Danos, V. (1990), La Logique Linéaire Appliquée à l’étude de Divers Processus
de Normalisation (Principalement du λ-Calcul), PhD thesis, University
of Paris VII.

Danos, V. & Regnier, L. (1989), ‘The structure of multiplicatives’, Archive
for Mathematical Logic 28, 181–203.

Davidson, D. (1980), The logical form of action sentences, in ‘Essays on ac-
tions and events’, Clarendon Press, Oxford, chapter 6, pp. 105–148.

Davis, E. & Marcus, G. (2015), ‘Commonsense reasoning and common-
sense knowledge in artificial intelligence’, Communications of the ACM
58(9), 92–103.

de Bruijn, N. G. (1972), ‘Lambda calculus notation with nameless dummies, a
tool for automatic formula manipulation, with application to the church-
rosser theorem’, 75(5), 381–392.

de Groote, P. (1996), Partially commutative linear logic: sequent calculus
and phase semantics, in V. M. Abrusci & C. Casadio, eds, ‘Proofs and
Linguistic Categories, Application of Logic tot the Analysis and Imple-
mentation of Natural Language’, CLUEB, pp. 199–208. Proceedings 1996
Roma Workshop.

de Groote, P. (2001), Towards abstract categorial grammars, in ‘Proceedings
of the 39th Annual Meeting on Association for Computational Linguis-
tics’, Association for Computational Linguistics, pp. 252–259.

de Groote, P. (2015), Abstract categorial parsing as linear logic programming,
in ‘Proceedings of the 14th Meeting on the Mathematics of Language
(MoL14)’, Association for Computational Linguistics, Chicago, Illinois,
pp. 15–25.

de Groote, P. & Pogodalla, S. (2004), ‘On the expressive power of abstract
categorial grammars: Representing context-free formalisms’, Journal of
Logic, Language and Information 13(4), 421–438.
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Retoré, C. (2003), ‘Handsome proof-nets: Perfect matchings and cographs’,
Theoretical Computer Science 294(3), 473–488.

Roorda, D. (1991), Resource Logics: A Proof-theoretical Study, PhD thesis,
University of Amsterdam.

Ross, J. R. (1969), Constraints on Variables in Syntax, PhD thesis, MIT.

187



Bibliography

Rumelhart, D. & McClelland, J. (1986), On learning the past tenses of English
verbs, in ‘Parallel distributed processing: explorations in the microstruc-
ture of cognition, vol. 2: psychological and biological models’, MIT Press,
pp. 216–271.

Russell, S. & Norvig, P. (1995), ‘Artificial intelligence: A modern approach’.
Third Edition, 2009.

Sag, I., Wasow, T. & Bender, E. (1999), Syntactic theory: A formal introduc-
tion, Vol. 92, Center for the Study of Language and Information Stanford,
CA.

Sanchez, I., Mitchell, J. & Riedel, S. (2018), Behavior analysis of NLI models:
Uncovering the influence of three factors on robustness, in ‘Proceedings
of the 2018 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 1
(Long Papers)’, Association for Computational Linguistics, New Orleans,
Louisiana, pp. 1975–1985.

Schmid, H. (1997), Probabilitstic part-of-speech tagging using decision trees,
in D. B. Jones & H. Somers, eds, ‘New Methods in Language Processing’,
Routledge, chapter 12, pp. 154–164.

Seki, H., Matsumura, T., Fujii, M. & Kasami, T. (1991), ‘On multiple context-
free grammars’, Theoretical Computer Science 88, 191–229.

Shieber, S. (1985), ‘Evidence against the context-freeness of natural language’,
Linguistics & Philosophy 8, 333–343.

Shieber, S., Schabes, Y. & Pereira, F. (1995), ‘Principles and implementation
of deductive parsing’, Journal of Logic Programming 24(1–2), 3–36.

Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A.,
Lanctot, M., Sifre, L., Kumaran, D., Graepel, T. et al. (2017), ‘Mas-
tering chess and shogi by self-play with a general reinforcement learning
algorithm’, arXiv preprint arXiv:1712.01815 .

Sinkhorn, R. (1964), ‘A relationship between arbitrary positive matrices
and doubly stochastic matrices’, The annals of mathematical statistics
35(2), 876–879.

Stabler, E. (1997), Derivational minimalism, in A. Lecomte, ed., ‘LACL97’,
Vol. 1582 of Lecture Notes in Computer Science, Springer.

Statman, R. (2007), ‘On the complexity of alpha conversion’, Journal of Sym-
bolic Logic pp. 1197–1203.

Steedman, M. (1997), Temporality, in ‘Handbook of logic and language’, El-
sevier, pp. 895–938.

Steedman, M. (2000), The Syntactic Process, MIT Press, Cambridge, Mas-
sachusetts.

188



Bibliography

Suppes, P. (1957), Introduction to Logic, Van Nostrand Reinhold Company.

Szabolcsi, A. (2010), Quantification, Cambridge University Press.

Ueda, K. (2009), ‘LMNtal as a hierarchical logic programming language’, The-
oretical Computer Science 410(46), 4784–4800. Abstract Interpretation
and Logic Programming: In honor of professor Giorgio Levi.

Valent́ın, O. (2014), The hidden structural rules of the discontinuous Lambek
calculus, in C. Casadio, B. Coecke, M. Moortgat & P. Scott, eds, ‘Cat-
egories and Types in Logic, Language, and Physics: Essays dedicated
to Jim Lambek on the Occasion of this 90th Birthday’, number 8222 in
‘Lecture Notes in Artificial Intelligence’, Springer, pp. 402–420.

van Benthem, J. (1995), Language in Action: Categories, Lambdas and Dy-
namic Logic, MIT Press, Cambridge, Massachusetts.

van der Sandt, R. (1992), ‘Presupposition projection as anaphora resolution’,
Journal of semantics 9(4), 333–377.

van Eijck, J. & Kamp, H. (1997), Representing discourse in context, in ‘Hand-
book of logic and language’, Elsevier, pp. 179–237.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N.,
Kaiser,  L. & Polosukhin, I. (2017), Attention is all you need, in ‘Proceed-
ings of the 31st International Conference on Neural Information Process-
ing Systems’, pp. 6000–6010.

Veale, T., Shutova, E. & Klebanov, B. B. (2016), ‘Metaphor: A computational
perspective’, Synthesis Lectures on Human Language Technologies 9(1).

Verkuyl, H. (2008), Binary Tense, CSLI Publications.

Verkuyl, H. (2011), ‘Tense, aspect and temporal representation’, Handbook
of Logic and Language. 2nd Edition, Elsevier: Amsterdam, Boston, etc
pp. 975–988.

Verkuyl, H. J., de Swart, H. & van Hout, A., eds (2005), Perspectives on
Aspect, Springer.

Vermaat, W. (1999), Controlling movement: Minimalism in a deductive per-
spective, Master’s thesis, Utrecht University, Utrecht.

Vermaat, W. (2005), The logic of variation: A cross-linguistic account of wh-
question formation, PhD thesis, Utrecht Institute of Linguistics OTS,
Utrecht University.

Vijay-Shanker, K. & Weir, D. (1994), ‘The equivalence of four extensions of
context free grammars’, Mathematical Systems Theory 27(6), 511–546.

189



Bibliography

Wallace, B. C., Choe, D. K., Kertz, L. & Charniak, E. (2014), Humans re-
quire context to infer ironic intent (so computers probably do, too), in
‘Proceedings of the 52nd Annual Meeting of the Association for Compu-
tational Linguistics (Volume 2: Short Papers)’, pp. 512–516.

Wang, A., Pruksachatkun, Y., Nangia, N., Singh, A., Michael, J., Hill, F.,
Levy, O. & Bowman, S. R. (2019), ‘Superglue: A stickier benchmark
for general-purpose language understanding systems’, arXiv preprint
arXiv:1905.00537 .

Wang, A., Singh, A., Michael, J., Hill, F., Levy, O. & Bowman, S. R. (2018),
‘GLUE: A multi-task benchmark and analysis platform for natural lan-
guage understanding’, arXiv preprint arXiv:1804.07461 .

Wijnholds, G. (2011), Investigations into categorial grammar: Symmetric pre-
group grammar and Displacement calculus, Master’s thesis, Utrecht Uni-
versity.

Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C. & Yu, P. S. (2019),
‘A comprehensive survey on graph neural networks’, arXiv preprint
arXiv:1901.00596 .

190


	Contents
	Introduction
	Motivations: grammar, meaning and logic
	Precursors of type-logical grammars
	Lambek calculus and type-logical grammars
	Some applications
	Problems and limitations
	Roadmap

	Modern type-logical grammars
	Multimodal type-logical grammars
	The Displacement calculus
	Lambda grammars
	Hybrid type-logical grammars
	The logic of scope
	Lambek-Grishin
	Discussion
	Conclusion

	Proof Nets
	Proof systems
	Multiplicative proof nets
	Conclusions

	First-order linear logic
	Introduction
	Proof theory
	MILL1 proof nets
	The Displacement calculus
	Hybrid type-logical grammars
	Comparing formalisms
	A visual comparison of the different calculi
	Conclusions

	Graph rewriting
	Multimodal proof nets
	Generalized multimodal proof nets
	Discussion

	Wide-Coverage Semantics
	Introduction: natural language understanding in the age of deep learning
	Type-logical grammars and wide-coverage semantics
	Supertagging
	Supertag-factored parsing
	Neural proof nets
	Semantics
	Conclusion

	Conclusions and future directions
	Open questions and future research

	Bibliography

